首页 | 本学科首页   官方微博 | 高级检索  
     


Self-assembly fabrication of ZnO hierarchical micro/nanospheres for enhanced photocatalytic degradation of endocrine-disrupting chemicals
Authors:Jin-Chung Sin  Sze-Mun Lam  Keat-Teong Lee  Abdul Rahman Mohamed
Affiliation:School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Abstract:ZnO hierarchical micro/nanospheres were successfully synthesized via a facile and surfactant-free chemical solution route. The field emission scanning electron microscopy and transmission electron microscopy observations showed that the ZnO micro/nanospheres were assembled by large amounts of interleaving nanosheets with the thickness of about 17 nm. The X-ray diffraction, energy dispersion X-ray and Raman results revealed that the as-synthesized products were well-crystalline and possessing wurtzite hexagonal phase pure ZnO. Under UV irradiation, the ZnO micro/nanospheres showed an enhanced photocatalytic performance compared with the ZnO nanorods and commercial TiO2 in the degradation of phenol. The photocatalytic enhancement of ZnO micro/nanospheres was attributed to their unique hierarchical porous surface structure and large surface area which can enhance the electron–hole separation and increased the yield of hydroxyl radical quantities as evidenced by the photoluminescence spectra. By using a certain of radical scavengers, hydroxyl radical was determined to play a pivotal role for the phenol degradation. Moreover, the as-synthesized ZnO micro/nanospheres could be easily recycled without any significant loss of the photocatalytic activity. Other endocrine-disrupting chemicals such as resorcinol, bisphenol A and methylparaben were also successfully photodegraded under identical conditions. These characteristics showed the practical applications of the ZnO micro/nanospheres in environmental remediation.
Keywords:ZnO  Hierarchical  Photocatalysis  Endocrine-disrupting chemical
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号