首页 | 本学科首页   官方微博 | 高级检索  
     


Structural,ferroelectric, and optical properties of Pr-NBT-xCTO relaxor ferroelectric thin films
Authors:Wenhua Huang  Xingru Du  Santhosh Kumar Thatikonda  Ni Qin  Chuangye Yao  Aize Hao  Dinghua Bao
Affiliation:State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
Abstract:Sol-gel method was used to prepare the Pr3+ ions-doped (1-x)Na0.5Bi0.5TiO3-xCaTiO3 (Pr-NBT-xCTO) (x?=?0, 0.04, 0.06, 0.08, 0.1, 0.12, and 0.16) thin films on Pt/Ti/SiO2/Si and fused silicon substrates. The structure phase of thin films was evolving from rhombohedral (R3c) to orthorhombic (Pnma) with increasing CTO content. Owing to the morphotropic phase boundary (MPB), the improved ferroelectric and dielectric properties were obtained at x?=?0.06–0.1. The MPB was formed from the concomitant phase of rhombohedral (R3c) and orthorhombic (Pnma). The Pr-NBT-0.08CTO thin film showed the best ferroelectric and dielectric properties, as well as strong relaxor behavior (the diffusion factor is γ?=?1.79). In addition, all the films exhibited strong red emission as excited by UV light, and wide optical band-gap (3.44–3.47?eV), which might be influenced by grain size and structural variation. Our results indicate that Pr-NBT-xCTO thin films may have potential applications in ferroelectric-luminescence multifunctional optoelectronic devices.
Keywords:Ferroelectric and dielectric properties  Relaxor behavior  Optical band-gap  Sol-gel method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号