首页 | 本学科首页   官方微博 | 高级检索  
     


3D printed SiC nanowire reinforced composites for broadband electromagnetic absorption
Authors:Shanshan Xiao  Hui Mei  Daoyang Han  Laifei Cheng
Affiliation:Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi''an, Shaanxi, 710072, PR China
Abstract:SiC nanowire/acrylic resin (SiCnw/ACR) composites with broadband electromagnetic (EM) absorption capabilities were fabricated by a novel procedure using 3D stereolithography (3D-SL) printing technology. The EM absorption abilities of the composites can be adjusted by tuning the SiCnw content and the thickness of the printing layer. When the SiCnw content is 3?wt% and the thickness of the printing layer is 25?μm–50?μm, the SiCnw/ACR composite has an optimally broad effective absorption bandwidth (EAB) and a high efficiency for EM absorption, whether assessing the C, X or Ku band, because of the high dielectric loss and proper impedance matching between the materials and free space. In the C band (4–8?GHz), the EAB reaches 2.9?GHz, and the reflection loss (RL) reaches ?34.1?dB; in the X band (8–12?GHz), the EAB reaches 4?GHz, which covers the entire X band, and the RL reaches ?34.5?dB; in the Ku band (12–18?GHz), the EAB exceeds 6?GHz, which covers the whole Ku band, and the RL reaches ?34.7?dB. This research is of great importance to the rapid preparation of parts, shells or devices with arbitrarily complex shapes and high efficiency broadband EM absorption abilities.
Keywords:3D printing  SiC nanowires  Parameter optimization  Microstructural analysis  Electromagnetic absorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号