首页 | 本学科首页   官方微博 | 高级检索  
     

基于ReliefF的层次分类在线流特征选择算法
引用本文:张小清,王晨曦,吕彦,林耀进. 基于ReliefF的层次分类在线流特征选择算法[J]. 计算机应用, 2022, 42(3): 688-694. DOI: 10.11772/j.issn.1001-9081.2021040789
作者姓名:张小清  王晨曦  吕彦  林耀进
作者单位:闽南师范大学 计算机学院,福建 漳州 363000
数据科学与智能应用福建省高校重点实验室,福建 漳州 363000
基金项目:国家自然科学基金资助项目(62076116);;福建省自然科学基金资助项目(2020J01811,2020J0179)~~;
摘    要:在图像标注、疾病诊断等实际分类任务中,数据标记空间的类别通常存在着层次化结构关系,且伴随着特征的高维性.许多层次特征选择算法因不同的实际任务需求而提出,但这些已有的特征选择算法忽略了特征空间的未知性和不确定性.针对上述问题,提出一种基于ReliefF的面向层次分类学习的在线流特征选择算法OH_ReliefF.首先将类别...

关 键 词:特征选择  在线流特征选择  层次分类  ReliefF算法  兄弟策略
收稿时间:2021-05-17
修稿时间:2021-07-11

Hierarchical classification online streaming feature selection algorithm based on ReliefF algorithm
ZHANG Xiaoqing,WANG Chenxi,LYU Yan,LIN Yaojin. Hierarchical classification online streaming feature selection algorithm based on ReliefF algorithm[J]. Journal of Computer Applications, 2022, 42(3): 688-694. DOI: 10.11772/j.issn.1001-9081.2021040789
Authors:ZHANG Xiaoqing  WANG Chenxi  LYU Yan  LIN Yaojin
Affiliation:College of Computer Science,Minnan Normal University,Zhangzhou Fujian 363000,China
Key Laboratory of Data Science and Intelligence Application,Fujian Province University,Zhangzhou Fujian 363000,China
Abstract:In practical classification tasks such as image annotation and disease diagnosis, there is usually a hierarchical structural relationship between the classes in the label space of data with high dimensionality of the features. Many hierarchical feature selection algorithms have been proposed for different practical tasks, but ignoring the unknown and uncertainty of feature space. In order to solve the above problems, an online streaming feature selection algorithm OH_ReliefF based on ReliefF for hierarchical classification learning was presented. Firstly, the hierarchical relationship between classes was incorporated into the ReliefF algorithm to define a new method HF_ReliefF for calculating feature weights for hierarchical data. Then, important features were dynamically selected based on the ability of features to classify decision attributes. Finally, the dynamic redundancy analysis of features was performed based on the independence between features. Experimental results show that the proposed algorithm achieves better results in all evaluation metrics of the K-Nearest Neighbor (KNN) classifier and the Lagrangian Support Vector Machine (LSVM) classifier at least 7 percentage points improvement in accuracy when compared with five advanced online streaming feature selection algorithms.
Keywords:feature selection  online streaming feature selection  hierarchical classification  ReliefF algorithm  sibling strategy  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号