首页 | 本学科首页   官方微博 | 高级检索  
     


Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating
Abstract: A novel technique to generate binary phase-coded, direct-sequence ultra-wideband (DS-UWB) signals in the optical domain is proposed and demonstrated. In the proposed system, the wavelengths from a laser array are modulated by a Gaussian pulse, which is sent to a multichannel optical frequency discriminator, to generate a UWB monocycle or doublet pulse sequence with a predetermined phase-code pattern. By tuning the wavelengths of the laser array, or by tuning the states of polarization of the wavelengths, the generated pulse shape and code pattern can be changed. The key device in the system is the multichannel dispersive chirped fiber Bragg grating (FBG), which functions, in combination with a dispersive fiber, as a multichannel frequency discriminator with a step-increased group-delay response, to ensure the generated UWB sequence to have uniform time spacing among the chips and to compensate for the fiber-induced chromatic dispersion. The proposed scheme is experimentally demonstrated. A multichannel chirped FBG is designed and fabricated. Binary phase-coded DS-UWB signals with different code patterns are experimentally generated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号