首页 | 本学科首页   官方微博 | 高级检索  
     

基于图聚类的入侵检测算法研究
引用本文:王国辉,林果园. 基于图聚类的入侵检测算法研究[J]. 计算机应用, 2011, 31(7): 1898-1900. DOI: 10.3724/SP.J.1087.2011.01898
作者姓名:王国辉  林果园
作者单位:中国矿业大学 计算机科学与技术学院,江苏 徐州 221116
基金项目:江苏省自然科学基金资助项目,中国矿业大学青年科技基金资助项目
摘    要:针对当前聚类算法仅依赖于初始聚类中心并且无法精确区别非凹形状类的不足,现将图学习知识应用到聚类算法中,提出了一种基于图聚类的入侵检测算法P-BFS。为得到较准确的分类模型,算法中引入了一种基于逼近函数的相似性度量方法。实验结果论证了图聚类思想应用于入侵检测系统的优越性;同时表明了,与K-means聚类算法相比,P-BFS图聚类算法具有较高的性能。

关 键 词:入侵检测   聚类分析   图聚类   逼近函数   聚类熵
收稿时间:2011-01-13
修稿时间:2011-03-03

Intrusion detection method based on graph clustering algorithm
WANG Guo-hui,LIN Guo-yuan. Intrusion detection method based on graph clustering algorithm[J]. Journal of Computer Applications, 2011, 31(7): 1898-1900. DOI: 10.3724/SP.J.1087.2011.01898
Authors:WANG Guo-hui  LIN Guo-yuan
Affiliation:School of Computer Science and Technology, China University of Mining and Technology, Xuzhou Jiangsu 221116,China
Abstract:Concerning the defects of the current clustering algorithm for its dependence only on the initial clustering center and failure in exactly distinguishing classes of non-concave shape, this paper applied the knowledge of group learning into the clustering algorithm and proposed the anomaly intrusion detection algorithm P-BFS based on graph clustering. In order to obtain more correct classification model, this algorithm introduced a measurement method of data points similarity based on the approximate function. The experimental results suggest the advantages of the application of the graph clustering algorithm in the intrusion detection system. In addition, it indicates that compared with the classical K-means clustering algorithm, P-BFS has better performance.
Keywords:intrusion detection   clustering analysis   graph clustering   approximate function   clustering entropy
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号