首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study of liquid nitrogen cavitating flow through nozzles of various shapes
Affiliation:1. Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest, Hungary;2. Department of Thermohydraulics, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary;3. University of Belgrade, Faculty of Mechanical Engineering, Serbia\n;4. University of Belgrade, Faculty of Technology and Metallurgy, Serbia\n;5. Budapest University of Technology and Economics, Department of Electronics Technology, Hungary\n
Abstract:The cavitating flow of cryogenic liquid through a spray nozzle is influenced by many factors, such as unique thermophysical properties of cryogenic liquid, the inflow temperature and the complicated geometrical structure of the spray nozzle. The geometrical parameters of liquid nitrogen spray nozzles have a profound impact on cavitating flow which in turn affects spray atomization characteristics and cooling performance. In present study, CFD simulations are performed to investigate influence of the nozzle geometry on the liquid nitrogen cavitating flow. The mixture model is used to describe the liquid-vapor two phase flow, and both the cavitation and evaporation are considered for the phase change. The predictions of mass flow of liquid nitrogen spray are validated against experimental results. The effects of geometric parameters, including the outlet orifice diameter and the length of nozzle, the inlet edge angle of orifice, the inlet corner radius of orifice, the orifice shape and different positions of swirl vanes, are investigated under a wide range of pressure difference and inflow temperature. The results show that the effects of geometric parameters on cavitating flow show different trends under subcooled conditions compared with saturated temperature conditions. The flow characteristics are more affected by the changes of the inlet edge angle, the inlet corner radius, and the orifice shape. The insert of swirl vanes has an effect on the distribution of the cavitated vapor within the orifice, but it has little influence on flow characteristics. The results could enrich our knowledge of liquid nitrogen cavitating flow in spray nozzles of various shapes.
Keywords:Liquid nitrogen spray  Nozzle geometry  Cryogenic cavitation  Mixture model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号