首页 | 本学科首页   官方微博 | 高级检索  
     


Trajectory tracking for two-degree of freedom helicopter system using a controller-disturbance observer integrated design
Affiliation:Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan, Iran
Abstract:Trajectory tracking control for helicopters, which are widely used in severe situations such as military and rescue missions, is a challenging field of research. In helicopter system, the stability problem and predefined trajectories tracking are main challenges, especially in the presence of external disturbances and dynamic model uncertainties. Hence, a robust control design is needed for tracking the desired references. There has been a lot of motivation for solving these problems with simpler methods and also reducing the couplings in the helicopter system to achieve better performance, as the presented paper attempts to fill these gaps. This paper focuses on designing control laws for two-degree of freedom helicopter system while assuring the closed-loop stability. A nonlinear disturbance observer-based control (NDOBC) is designed for attenuating the effects of exogenous disturbances. Trajectory tracking controller and nonlinear disturbance observer are formulated in the form of two linear matrix inequality (LMI) problems. The closed-loop system stability, including controller and observer, is investigated by Lyapunov theorem. The effectiveness of the proposed design for tracking the trajectories (vertical flight and pitch angle rotor blade) and disturbance estimation is verified by simulation results.
Keywords:Control laws  Nonlinear disturbance observer-based control  Linear matrix inequalities  Lyapunov theorem
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号