首页 | 本学科首页   官方微博 | 高级检索  
     


Flow properties of molten ethylene–vinyl acetate copolymer and melt fracture
Authors:Tokio Fujiki  Masaru Uemura  Yujiro Kosaka
Abstract:In an investigation of the behavior and formation mechanism of melt fracture the flow properties of molten ethylene–vinyl acetate (EVA) copolymer in the region of high shear rate were measured with a capillary-type rheometer. EVA copolymer differs slightly in flow curve from low-density polyethylene (LDPE); it seems, however, that the difference is due to the difference in molecular weight distribution (MWD) rather than to the materials themselves. The fluidity of molten EVA copolymer having a narrow MWD is equivalent to that of LDPE having a broad MWD and, generally, EVA copolymer has a higher fluidity than LDPE. It is expected that the fluidity increases with incorporation of vinyl acetate at the same MWD and the same M?w. The critical shear rate increases with melt index and temperature. It cannot be found that the materials themselves and the MWD directly influence the critical point of melt fracture formation when the melt index is taken as a parameter. The critical viscosity (ηc) at which melt fracture forms decreases in an almost straight line with an increase of melt index. It was found from the studies of end correction and behavior of melt fracture formation that melt fracture occurs at the inlet of the die, and it is supposed that the melt fracture formation is caused by the elastic turbulence in the flow pattern due to a failure of recoverable shear strain at the die inlet.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号