首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of temperature in synthesis of silver nanoparticles in triblock copolymer micellar solution
Abstract:Knowing that poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) in aqueous solution is thermoresponsive, the effect of temperature on formation and stabilisation of silver nanoparticles has been investigated systematically. Synthesis of silver nanoparticles was achieved from silver ammonia complex [Ag(NH3)2]+ in aqueous solution of hydroxyl terminated PEO–PPO–PEO at four different temperatures. A non-Arrhenius behaviour for the rate of silver reduction with temperature was observed. The hydrodynamic diameter of the composite coils suddenly increased at certain intermediate time indicating sudden agglomeration of individual micelles to form bigger network structures. The size and the distribution of the nanoparticles show a bimodal distribution at the lowest temperature. At intermediate temperature, particles of the smallest size with a narrow distribution was achieved. At the highest temperature, a bunch-like particle morphology was found. Chemical changes in polymer properties were observed at higher temperatures. The results suggest that at a lower temperature, a change in polymer morphology play an important role in controlling the particle size and their distribution, whereas at a higher temperature, this role is shifted to the chemical change of the polymer. At an intermediate temperature, a balance between the two effects provides the optimum condition for formation of silver nanoparticles of small size and narrow distribution.
Keywords:silver  nanoparticles  triblock copolymer  PEO–PPO–PEO
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号