首页 | 本学科首页   官方微博 | 高级检索  
     


Direct Electron Transfer Reactivity of Glucose Oxidase on Electrodes Modified With Zirconium Dioxide Nanoparticles
Authors:Xiaodi Yang Qianqian Zhang Yuming Sun Songqin Liu
Affiliation:Nanjing Normal Univ., Nanjing;
Abstract:The direct electron transfer between electrodes and glucose oxidase (GOD) immobilized in a matrix containing zirconium dioxide nanoparticles (ZrO2) is described. The protein-nanoparticle assembly is stabilized by charged and uncharged compounds and the direct electron transfer is enhanced. The effects of different compositions on the electrochemical parameters, formal potential, surface loading, and constant heterogeneous electron transfer rate are characterized with cyclic voltammetry. The fastest electron transfer rate with the smallest deviation of the is obtained when GOD is immobilized with ZrO2 nanoparticles, colloidal platinum and poly-Lysine (PLL). Incorporation of charged compounds for immobilization of GOD causes a larger positive shift of the formal potential. Electrochemical and spectroscopic measurements show that the GOD entrapped in ZrO2/Pt-PLL or ZrO2/Pt-PVA film retains its bioactivity efficiently and exhibits excellent electrocatalytic behavior towards glucose. No enzymatic activity of the immobilized GOD can be observed on ZrO2/DMSO and ZrO2/DDAB film.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号