首页 | 本学科首页   官方微博 | 高级检索  
     


Crystallographic analysis of the FCC → BCC martensitic transformation in high-carbon steel
Authors:V M Gundyrev  V I Zel’dovich
Affiliation:1. Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Ekaterinburg, 620990, Russia
Abstract:Based on the phenomenological crystallographic theory of martensitic transformations, the following crystallographic characteristics of the tetragonal martensite in high-carbon steel have been calculated: orientation relationships between the crystal lattices of the bct martensite and fcc austenite; the magnitude and direction of the macroscopic shear; the habit plane; the angle and the axis of rotation of the crystal lattice of the martensite. The calculation was performed for three variants of lattice deformation: Bain deformation; two-shear Kurdjumov-Sachs deformation; and the deformation we suggested upon the analysis of the fcc-bcc transformation. In the last variant, a minimum rotation of the crystal lattice of martensite is required; consequently, this variant is closest to the real mechanism of the martensitic transformation. An expression has been derived that describes the interrelation between the degree of tetragonality of the crystal lattice of martensite and the magnitude of the shear deformation of the lattice. It has been shown that the 12 crystal-lographically equivalent variants of shear upon the formation of the lattice of the tetragonal martensite form three groups in each of which the martensite has the same tetragonality axis. For each variant of the shear, we have two equivalent variants of deformation of the martensite with invariant lattice. This results in 24 variants of orientation relationships.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号