首页 | 本学科首页   官方微博 | 高级检索  
     

基于矢量影响力聚类系数的高效有向网络社团划分算法
引用本文:邓小龙, 翟佳羽, 尹栾玉. 基于矢量影响力聚类系数的高效有向网络社团划分算法[J]. 电子与信息学报, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
作者姓名:邓小龙  翟佳羽  尹栾玉
作者单位:1.(北京邮电大学网络空间安全学院可信分布式计算与服务教育部重点实验室 北京 100876) ②(北京邮电大学国际学院 北京 100876) ③(北京师范大学社会管理研究院 北京 100875)
基金项目:国家973 计划项目(2013CB 329600),教育部哲学社会科学重大攻关项目(15JZD027),十二五国家科技支撑计划国家文化科技创新工程2013 年备选项目(2013BAH43F01)
摘    要:社团结构划分对于分析复杂网络的统计特性非常重要,以往研究往往侧重对无向网络的社团结构挖掘,对新兴的微信朋友圈网络、微博关注网络等涉及较少,并且缺乏高效的划分工具。为解决传统社团划分算法在大规模有向社交网络上无精确划分模拟模型,算法运行效率低,精度偏差大的问题。该文从构成社团结构最基础的三角形极大团展开数学推导,对网络节点的局部信息传递过程进行建模,并引入概率图有向矢量计算理论,对有向社交网络中具有较大信息传递增益的节点从数学基础创造性地构建了有向传递增益系数(Information Transfer Gain, ITG)。该文以此构建了新的有向社团结构划分效果的目标函数,提出了新型有向网络社团划分算法ITG,通过在模拟网络数据集和真实网络数据集上进行实验,验证了所提算法的精确性和新颖性,并优于FastGN, OSLOM和Infomap等经典算法。

关 键 词:有向社团划分   信息传递增益   目标函数优化   算法可扩展性
收稿时间:2017-01-25
修稿时间:2017-08-16

Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm
DENG Xiaolong, ZHAI Jiayu, YIN Luanyu. Vector Influence Clustering Coefficient Based Efficient Directed Community Detection Algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2071-2080. doi: 10.11999/JEIT170102
Authors:DENG Xiaolong  ZHAI Jiayu  YIN Luanyu
Affiliation:1. (Key Laboratory of Trustworthy Distributed Computing and Service of Education Ministry, Beijing University of Posts and Telecommunications, Beijing 100876,China);;2. (International School, Beijing University of Posts and Telecommunications, Beijing 100876, China)
Abstract:Community detection method is significant to character statistics of complex network. Community detection in directed structured network is an attractive research problem while most previous approaches attempt to divide undirected networks into communities while there has appeared many large scale directed social network such as WeChat circle of friends and Sina Micro-Blog. To solve the problem that low quality of model, low efficiency of execution and high deviation of precision from the conventional community detection algorithm on large-scale social network and directed network, this paper provides an approach that starts with the triangle structure of community basis and models the local information transfer to detect community in large-scale directed social network. Basing on the directed vector theory in probability graph and the high information transfer gain of vertex in directed network, this paper constructs the Information Transfer Gain (ITG) method and the corresponding target functions for evaluating the quality of a specific partition in community detection algorithm. Then the combine of ITG with the target function to compose the new community detection algorithm for directed network. Extensive experiments in synthetic signed network and real-life large networks derived from online social media, it is proved that the proposed method is more accurate and faster than several traditional community detection methods such as FastGN, OSLOM and Infomap.
Keywords:Community detection in directed network  Information Transfer Gain (ITG)  Target function optimization  Scalability
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号