首页 | 本学科首页   官方微博 | 高级检索  
     

基于跨领域卷积稀疏自动编码器的抽象图像情绪性分类
引用本文:樊养余, 李祖贺, 王凤琴, 马江涛. 基于跨领域卷积稀疏自动编码器的抽象图像情绪性分类[J]. 电子与信息学报, 2017, 39(1): 167-175. doi: 10.11999/JEIT160241
作者姓名:樊养余  李祖贺  王凤琴  马江涛
作者单位:1.(西北工业大学电子信息学院 西安 710072) ②(郑州轻工业学院计算机与通信工程学院 郑州 450002)
基金项目:陕西省科技统筹创新工程重点实验室项目(2013 SZS15-K02)
摘    要:为了将无监督特征学习应用于小样本量的图像情绪语义分析,该文采用一种基于卷积稀疏自动编码器进行自学习的领域适应方法对少量有标记抽象图像进行情绪性分类。并且提出了一种采用平均梯度准则对自动编码器所学权重进行排序的方法,用于对基于不同领域的特征学习结果进行直观比较。首先在源领域中的大量无标记图像上随机采集图像子块并利用稀疏自动编码器学习局部特征,然后将对应不同特征的权重矩阵按照每个矩阵在3个色彩通道上的平均梯度中的最小值进行排序。最后采用包含池化层的卷积神经网络提取目标领域有标记图像样本的全局特征响应,并送入逻辑回归模型进行情绪性分类。实验结果表明基于自学习的领域适应可以为无监督特征学习在有限样本目标领域上的应用提供训练数据,而且采用稀疏自动编码器的跨领域特征学习能在有限数量抽象图像情绪语义分析中获得比底层视觉特征更优秀的辨识效果。

关 键 词:图像分类   图像情绪   自学习   卷积自动编码器   领域适应
收稿时间:2016-03-17
修稿时间:2016-07-22

Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains
FAN Yangyu, LI Zuhe, WANG Fengqin, MA Jiangtao. Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains[J]. Journal of Electronics & Information Technology, 2017, 39(1): 167-175. doi: 10.11999/JEIT160241
Authors:FAN Yangyu  LI Zuhe  WANG Fengqin  MA Jiangtao
Affiliation:1. (School of Electronics and Information, Northwestern Polytechnical University, Xi’
Abstract:To apply unsupervised feature learning to emotional semantic analysis for images in small sample size situations, convolutional sparse autoencoder based self-taught learning for domain adaption is adopted for affective classification of a small amount of labeled abstract images. To visually compare the results of feature learning on different domains, an average gradient criterion based method is further proposed for the sorting of weights learned by sparse autoencoders. Image patches are first randomly collected from a large number of unlabeled images in the source domain and local features are learned using a sparse autoencoder. Then the weight matrices corresponding to different features are sorted according to the minimal average gradient of each matrix in three color channels. Global feature activations of labeled images in the target domain are finally obtained by a convolutional neural network including a pooling layer and sent into a logistic regression model for affective classification. Experimental results show that self-taught learning based domain adaption can provide training data for the application of unsupervised feature learning in target domains with limited samples. Sparse autoencoder based feature learning across different domains can produce better identification effect than low-level visual features in emotional semantic analysis of a limited number of abstract images.
Keywords:Image classification  Image affect  Self-taught learning  Convolutional autoencoder  Domain adaption
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号