首页 | 本学科首页   官方微博 | 高级检索  
     


A cloudification methodology for multidimensional analysis: Implementation and application to a railway power simulator
Affiliation:1. Department of Atmospheric Sciences, The University of Arizona, Tucson, AZ, USA;2. Cooperative Institute for Climate and Satellites, Asheville, NC, USA
Abstract:Many scientific areas make extensive use of computer simulations to study complex real-world processes. These computations are typically very resource-intensive and present scalability issues as experiments get larger even in dedicated clusters, since these are limited by their own hardware resources. Cloud computing raises as an option to move forward into the ideal unlimited scalability by providing virtually infinite resources, yet applications must be adapted to this new paradigm. This process of converting and/or migrating an application and its data in order to make use of cloud computing is sometimes known as cloudifying the application. We propose a generalist cloudification method based in the MapReduce paradigm to migrate scientific simulations into the cloud to provide greater scalability. We analysed its viability by applying it to a real-world railway power consumption simulatior and running the resulting implementation on Hadoop YARN over Amazon EC2. Our tests show that the cloudified application is highly scalable and there is still a large margin to improve the theoretical model and its implementations, and also to extend it to a wider range of simulations. We also propose and evaluate a multidimensional analysis tool based on the cloudified application. It generates, executes and evaluates several experiments in parallel, for the same simulation kernel. The results we obtained indicate that out methodology is suitable for resource intensive simulations and multidimensional analysis, as it improves infrastructure’s utilization, efficiency and scalability when running many complex experiments.
Keywords:Railway simulator  Migration  MapReduce  Cloud computing  Many-task computing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号