首页 | 本学科首页   官方微博 | 高级检索  
     


A novel hybrid learning algorithm for full Bayesian approach of artificial neural networks
Affiliation:1. Grand Accélérateur National d''Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France;2. Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1, UMR 5797, CNRS/IN2P3, Chemin de Solarium, BP 120, 33175 Gradignan, France;3. Astronomy and Physics Department, Saint Mary''s University, Halifax, Nova Scotia, Canada B3H 3C3;4. TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3;5. Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium;6. LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France;7. Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1;1. Department of Mechanical Engineering, Universiti Teknologi Petronas, Malaysia;2. Department Civil Engineering, Universiti Teknologi Petronas, Malaysia;1. Department of Computer Science, Pondicherry University, Pondicherry, India;2. Department of ECE/MIT, Pondicherry, India;3. Department of Computer Science, RGET, Pondicherry, India
Abstract:The Bayesian neural networks are useful tools to estimate the functional structure in the nonlinear systems. However, they suffer from some complicated problems such as controlling the model complexity, the training time, the efficient parameter estimation, the random walk, and the stuck in the local optima in the high-dimensional parameter cases. In this paper, to alleviate these mentioned problems, a novel hybrid Bayesian learning procedure is proposed. This approach is based on the full Bayesian learning, and integrates Markov chain Monte Carlo procedures with genetic algorithms and the fuzzy membership functions. In the application sections, to examine the performance of proposed approach, nonlinear time series and regression analysis are handled separately, and it is compared with the traditional training techniques in terms of their estimation and prediction abilities.
Keywords:Bayesian neural networks  Bayesian learning  Hierarchical Bayesian models  Genetic algorithms  Markov chain Monte Carlo  Hybrid Monte Carlo
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号