首页 | 本学科首页   官方微博 | 高级检索  
     

自适应遗传算法在变压器局部放电高频模式识别的应用
引用本文:王国利,郑浩,郝艳捧,李彦明. 自适应遗传算法在变压器局部放电高频模式识别的应用[J]. 广东电力, 2004, 17(4): 1-5
作者姓名:王国利  郑浩  郝艳捧  李彦明
作者单位:清华大学,深圳研究生院,广东,深圳,518055;安徽淮南电力公司,安徽,淮南,232007;西安交通大学,陕西,西安,710049
基金项目:中国博士后基金资助项目(50379015)
摘    要:采用自适应遗传算法(AGA)作为神经网络的学习算法,对实验室中变压器局部放电超高频自动识别系统检测到的5种放电类型进行了模式识别.实验结果表明,AGA神经网络解决了BP神经网络对初始权值敏感、收敛速度慢和容易局部收敛的问题,具有较高的识别率和较强的推广能力,可以很好地应用于变压器局部放电的超高频模式识别中.

关 键 词:变压器  局部放电超高频检测  模式识别  自适应遗传算法  神经网络
文章编号:1007-290X(2004)04-0001-05
修稿时间:2004-04-29

Application of adaptive genetic algorithm to ultra-high-frequency partial discharge pattern recognition in transformers
WANG Guoli,ZHENG Hao,HAO Yanpeng,LI Yanming. Application of adaptive genetic algorithm to ultra-high-frequency partial discharge pattern recognition in transformers[J]. Guangdong Electric Power, 2004, 17(4): 1-5
Authors:WANG Guoli  ZHENG Hao  HAO Yanpeng  LI Yanming
Affiliation:WANG Guo~li~1,ZHENG Hao~2,HAO Yan~peng~1,LI Yan~ming~3
Abstract:An automated recognition system of ultra~high~frequency (UHF) partial discharge (PD) designed by the authors has been put forward to study the discharge properties in transformers. This paper presents adaptive genetic algorithm (AGA) to train neural network (NN) to distinguish between basic types of defects in transformers.Test results show that AGA~NN,as compared with BP~NN,can overcome slow convergence and possibility of being trapped at locally minimum value.Thus,the convergence, discrimination and generalization ability of AGA~NN is improved remarkably.
Keywords:transformer  UHF PD detection  pattern recognition  adaptive genetic algorithm  neural network
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号