首页 | 本学科首页   官方微博 | 高级检索  
     


FAST: Toward more effective and efficient image retrieval
Authors:Ruofei Zhang  Zhongfei Mark Zhang
Affiliation:(1) Department of Computer Science, Sate University of New York at Binghamton, Binghamton, NY 13902, USA
Abstract:This paper focuses on developing a Fast And Semantics-Tailored (FAST) image retrieval methodology. Specifically, the contributions of FAST methodology to the CBIR literature include: (1) development of a new indexing method based on fuzzy logic to incorporate color, texture, and shape information into a region-based approach to improving the retrieval effectiveness and robustness; (2) development of a new hierarchical indexing structure and the corresponding hierarchical, elimination-based A* retrieval (HEAR) algorithm to significantly improve the retrieval efficiency without sacrificing the retrieval effectiveness; it is shown that HEAR is guaranteed to deliver a logarithm search in the average case; (3) employment of user relevance feedback to tailor the effective retrieval to each user's individualized query preference through the novel indexing tree pruning (ITP) and adaptive region weight updating (ARWU) algorithms. Theoretical analysis and experimental evaluations show that FAST methodology holds great promise in delivering fast and semantics-tailored image retrieval in CBIR.
Keywords:Content-based image retrieval  Region-based features  Hierarchical indexing structure  Indexing tree pruning  Relevance feedback
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号