首页 | 本学科首页   官方微博 | 高级检索  
     

考虑“风-光-荷-储”联合运行的配电网双层规划方法
引用本文:刘源,杨军,杨丙权,朱旭,陈艳,王宣. 考虑“风-光-荷-储”联合运行的配电网双层规划方法[J]. 电力建设, 2017, 38(11). DOI: 10.3969/j.issn.1000-7229.2017.11.012
作者姓名:刘源  杨军  杨丙权  朱旭  陈艳  王宣
作者单位:1. 武汉大学电气工程学院,武汉市,430072;2. 国网湖北省电力公司武汉供电公司,武汉市,430013
基金项目:国家自然科学基金项目,国网湖北省电力公司科技项目(增量配电模式下城市电网规划技术研究) Project supported by National Natural Science Foundation of China
摘    要:分布式电源与储能系统在配电网中的应用是当前研究的热点。提出了一种风机、光伏电源、储能系统在配电网中的双层规划模型。上层模型以投资、运维费用为优化目标,同时考虑区域的购电费用及网损费用,完成风机和光伏电源的容量配置;下层模型提出了一种储能系统削峰填谷的运行策略,基于该策略完成储能系统的选址定容工作。针对以上模型,提出以下求解方法:基于遗传算法求解上层模型,并通过K均值聚类方法对比研究输入数据序列长度对规划结果的影响,通过帕累托分析研究了投资运维费用与购电费用及网损费用的关系;使用YALMIP工具箱完成储能系统运行策略的求解,进而完成储能系统的选址定容工作。最后,通过IEEE-33节点标准配电系统仿真验证了所提模型在风机和光伏电源以及储能系统规划方面的有效性,结果显示所提储能运行策略具有良好的削峰填谷效果。

关 键 词:风机(WT)  光伏电源(PV)  储能系统(ESS)  双层优化  遗传算法  K均值聚类

Bi-Level Planning Method for Distribution Network with 'WT-PV-Load-ESS'
LIU Yuan,YANG Jun,YANG Bingquan,ZHU Xu,CHEN Yan,WANG Xuan. Bi-Level Planning Method for Distribution Network with 'WT-PV-Load-ESS'[J]. Electric Power Construction, 2017, 38(11). DOI: 10.3969/j.issn.1000-7229.2017.11.012
Authors:LIU Yuan  YANG Jun  YANG Bingquan  ZHU Xu  CHEN Yan  WANG Xuan
Abstract:The research on distribution generation and energy storage system in distribution network is a hot topic of current research. This paper proposes a bi-level planning model of'WT-PV-Load-ESS' in distribution network. The upper model is optimized for the investment &maintenance cost, and the power purchase and power losses cost are also taken into account in the allocation of PV and WT. The lower model proposes a operation strategy of ESS for peak shaving, based on which the sizing &sitting work of ESS are completed. Aiming at the above model, the following solutions are proposed in this paper:the upper model is solved based on genetic algorithm;the influence of the length of the input data on the planning results is compared by K-means clustering method;Pareto analysis is used to study the relationship between the investment&maintenance cost and the power purchase &power loss cost;at last, based on the estimation of ESS's capacity, the strategy of ESS is solved with YALMIP toolbox, then the sizing &sitting work of ESS are completed. Finally, the effectiveness of the proposed model in the planning of 'WT-PV-Load-ESS' system are verified through the simulation of IEEE-33 node standard distribution system. The results show that the proposed ESS operation strategy has good effect in peak shaving.
Keywords:wind turbine ( WT )  photovoltaic ( PV )  energy storage system ( ESS )  bi-level optimization  genetic algorithm ( GA)  K-means clustering
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号