首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and properties of polydimethylsiloxane (PDMS)/polytetramethyleneadipate glycol (PTAd)-based waterborne polyurethane adhesives: Effect of PDMS molecular weight and content
Authors:Mohammad Mizanur Rahman  Aleya Hasneen  Han-Do Kim  Won Ki Lee
Affiliation:1. Advanced Ship Engineering Research Center, Pusan National University, Busan 609-735, Republic of Korea;2. Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea;3. Department of Organic Material Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea;4. Division of Chemical Engineering, Pukyong National University, Busan 608-739, Korea
Abstract:Waterborne polyurethane (WBPU) dispersions were prepared by pre-polymer process using siloxane polyol, namely polydimethylsiloxane (PDMS), and polyester polyol, namely poly(tetramethyleneadipate glycol) (PTAd), as a soft segment. Three different molecular weights (Mn = 550, 6000, 110,000) of PDMS and one fixed molecular weight of PTAd (Mn = 2000) was used during preparation of WBPU dispersions. This research aims to explore the potential use of PDMS in complementing WBPU by boosting flexibility, water resistance, and adhesive strength. The water swelling (%), tensile strength, and adhesive strength of WBPUs were investigated with respect to PDMS molecular weight and PDMS content (PDMS mol %). The water swelling (%) and tensile strength decreased with increasing PDMS molecular weight at a fixed PDMS content (mol %) in mixed polyol of WBPU films. By contrast, the peel adhesive strength peaked at 6.64 mol % and 4.43 mol % with molecular weight of PDMS at 550 and 6000, respectively, while it only decreased when the molecular weight of PDMS stood at 110,000. The adhesive strength was almost unaffected with optimum content (6.64 mol %) of lower PDMS molecular weight (Mn = 550) in mixed polyol-based WBPU after immersing the adhesive bonded nylon fabrics in water for 48 h among all of the samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Keywords:polyurethanes  adhesion  strength
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号