首页 | 本学科首页   官方微博 | 高级检索  
     


Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins
Authors:Xiao Deqing  Le Thai Van  Wirth Mary J
Affiliation:Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
Abstract:The electrophoresis of proteins was investigated using poly(dimethylsiloxane) (PDMS) microfluidic chips whose surfaces were modified with polyacrylamide through atom-transfer radical polymerization. PDMS microchips were made using a glass replica to mold channels 10 microm high and 30 microm wide, with a T-intersection. The surface modification of the channels involved surface oxidation, followed by the formation of a self-assembled monolayer of benzyl chloride initiators, and then atom-transfer radical polymerization to grow a thin layer of covalently bonded polyacrylamide. The channels filled spontaneously with aqueous buffer due to the hydrophilicity of the coating. The resistance to protein adsorption was studied by open-channel electrophoresis for bovine serum albumin labeled with fluorophor. A plate height of 30 microm, corresponding to an efficiency of 33 000 plates/m, was obtained for field strengths from 18 to 889 V/cm. The lack of dependence of plate height on field strength indicates that there is no detectable contribution to broadening from adsorption. A 2- to 3-fold larger plate height was obtained for electrophoresis in a 50-cm polyacrylamide-coated silica capillary, and the shape of the electropherogram indicated the efficiency is limited by a distribution of species. The commercial capillary exhibited both reversible and irreversible adsorption of protein, whereas the PDMS microchip exhibited neither. A separation of lysozyme and cytochrome c in 35 s was demonstrated for the PDMS microchip.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号