首页 | 本学科首页   官方微博 | 高级检索  
     

ASM的手骨提取方法研究
引用本文:黄 飞,尤启房,杨晋吉. ASM的手骨提取方法研究[J]. 计算机工程与应用, 2016, 52(3): 164-168
作者姓名:黄 飞  尤启房  杨晋吉
作者单位:华南师范大学 计算机学院,广州 510631
摘    要:骨龄自动评估面临的困难是骨骼准确定位与骨骼兴趣区域提取。由于手骨X光图像存在光照不均及骨骼发育程度不规则等因素影响,传统的图像分割方法在骨骼上的分割效果不太理想;为了实现对手骨边缘的精确提取,结合AdaBoost级联分类器,提出基于ASM(主动形状模型)算法的手骨边缘提取方法,丰富了骨龄自动评价系统的应用研究。实验表明,基于ASM算法的手骨分割能有效对手骨X射线图像进行准确的定位,为骨龄自动化评价系统的下一步工作奠定基础。

关 键 词:骨龄  AdaBoost级联分类器  主动形状模型  手骨提取  

Hand bone extraction method research based on ASM
HUANG Fei,YOU Qifang,YANG Jinji. Hand bone extraction method research based on ASM[J]. Computer Engineering and Applications, 2016, 52(3): 164-168
Authors:HUANG Fei  YOU Qifang  YANG Jinji
Affiliation:School of Computer Science, South China Normal University, Guangzhou 510631, China
Abstract:Difficulties faced in bone age automatic evaluation are bones position accuracy and extraction of bones interest area. Due to the influence of uneven illumination and the degree of development of irregular in X-ray bone images, the traditional method of image segmentation receives an unsatisfactory effect on extraction of bone segmentation. In order to achieve the accurate extraction of bone edges, a research method of extraction with AdaBoost cascade classifier based on ASM(Active Shape Model) algorithm is put forward, which enriches the application of automated bone age assessment system. According to the experimental results, the segmentation algorithm based on ASM can accurately locate X-ray images, making a good foundation for the next work.
Keywords:bone age  AdaBoost cascade classifier  active shape model  hand bone extraction  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号