首页 | 本学科首页   官方微博 | 高级检索  
     

基于压缩感知的图像自适应子空间追踪算法
引用本文:吕伟杰,陈 霞,刘红珍. 基于压缩感知的图像自适应子空间追踪算法[J]. 计算机工程与应用, 2016, 52(3): 220-223
作者姓名:吕伟杰  陈 霞  刘红珍
作者单位:天津大学 电气与自动化工程学院,天津 300072
摘    要:针对稀疏自适应匹配追踪(SAMP)算法中存在的运行速度慢、重建效果欠佳的问题,提出了一种新的自适应的子空间追踪算法(MASP)。采用SAMP算法中分段的思想,先对半减小预估稀疏度,再逐一增加,得到真实稀疏度后,再利用子空间追踪算法对原始信号进行重构。实验表明,相比于SAMP算法,该算法在相同观测数量的情况下,具有较快的运行时间和较好的重建效果,其中,在重构信噪比方面平均提高8.2%。

关 键 词:压缩感知  信号重构  自适应  子空间追踪  

Image adaptive subspace pursuit algorithm based on compressive sensing
LV Weijie,CHEN Xia,LIU Hongzhen. Image adaptive subspace pursuit algorithm based on compressive sensing[J]. Computer Engineering and Applications, 2016, 52(3): 220-223
Authors:LV Weijie  CHEN Xia  LIU Hongzhen
Affiliation:School of Electrical and Automation, Tianjin University, Tianjin 300072, China
Abstract:The Sparsity Adaptive Matching Pursuit(SAMP) algorithm has a large range of application in compressive sensing, but it runs slowly and the performance of recovery is not good. Compared with SAMP, a novel adaptive subspace pursuit algorithm is presented, which uses the idea of stage, evaluates the sparsity of the original signal step by step, and then with the information of sparsity, recovers the original signal using the subspace pursuit algorithm. The experiments demonstrate that the new algorithm not only improves the performance of the recovery, and saves the operating time compared with SAMP, but also solves the problem of unknown sparsity K in SP.
Keywords:compressive sensing  signal recovery  adaptive  subspace pursuit  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号