首页 | 本学科首页   官方微博 | 高级检索  
     


A mercury transport and fate model (LM2-Mercury) for mass budget assessment of mercury cycling in Lake Michigan
Authors:Xiaomi Zhang  Kenneth R Rygwelski  Russell G Kreis Jr  Ronald Rossmann
Affiliation:1. Trinity Engineering Associates, Inc Large Lakes Research Station, 9311 Groh Road, Grosse Ile, MI 48138, USA;2. U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Large Lakes and Rivers Forecasting Research Branch, Large Lakes Research Station, 9311 Groh Road, Grosse Ile, MI 48138, USA;3. Large Lakes Research Station, 9311 Groh Road, Grosse Ile, MI 48138, USA
Abstract:LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended and resuspendable solids (TSRS), dissolved organic carbon (DOC), and total, elemental, divalent, and methylmercury as state variables. Simplified processes among the mercury state variables including net methylation, net reduction of divalent mercury, and reductive demethylation are incorporated in the model. Volatilization of elemental mercury as a kinetic (phase transfer) process and partitioning of total, divalent, and methylmercury as a set of instantaneous equilibrium processes were also simulated. The model was calibrated to data collected in 1994 and 1995 and corroborated by comparing model output generated from a long-term model hindcast to total mercury measured in high quality sediment profiles. Model hindcast predictions of total mercury in the water column were within estimates of total mercury calculated from observed lake trout bioaccumulation factors. Using the model, a mass budget assessment of mercury cycling in the lake was conducted. Atmospheric deposition, including wet and dry (particle) deposition and absorption of gaseous divalent mercury, was the dominant source of total mercury to the lake, followed by sediment resuspension, and then tributary loads. The major loss mechanism of total mercury from the water was associated with the settling of solids, followed by net volatilization. Methylmercury loading associated with wet deposition was the dominant source to the lake, followed by tributary loadings, and in situ net methylation.
Keywords:Water quality modeling  Mass balance model  Mass budget assessment  Mercury  Lake Michigan
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号