首页 | 本学科首页   官方微博 | 高级检索  
     


Quantifying and evaluating the space overhead for alternative C++ memory layouts
Authors:Peter F Sweeney  Michael Burke
Abstract:This paper develops a formalism that precisely characterizes when class tables are required for C++ memory layouts. A memory layout is a particular choice of data structures for implementing run‐time support for object‐oriented languages. We use this formalism to quantify and evaluate, on a set of benchmarks, the space overhead for a set of C++ memory layouts. In particular, this paper studies the space overhead due to three language features: virtual dispatch, virtual inheritance, and dynamic typing. To date, there has been no scientific quantification or evaluation of C++ memory layouts. Our approach can help C++ implementors. This work has already influenced the memory layout design choices in IBM's Visual Age C++ V5 compiler. Applying our approach to a set of five benchmarks, we demonstrate that the impact of object‐oriented space overhead can vary dramatically between applications (ranging from 0.42% to 99.79% for our benchmarks). In particular, applications whose object space is dominated by instances of classes that heavily use object‐oriented language features will be significantly impacted by the choice of a memory layout. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:object‐oriented optimizations  programming language implementation  C++
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号