首页 | 本学科首页   官方微博 | 高级检索  
     

基于有限体积法Godunov格式的水锤计算模型
引用本文:赵越,周领,刘德有,张永会,王家泽,曹云,潘天文. 基于有限体积法Godunov格式的水锤计算模型[J]. 水利水电科技进展, 2019, 39(1): 76-81
作者姓名:赵越  周领  刘德有  张永会  王家泽  曹云  潘天文
作者单位:河海大学水利水电学院;国网新源控股有限公司白山抽水蓄能电站
基金项目:国家自然科学基金(51679066)
摘    要:针对管道内水锤问题,基于一阶和二阶Godunov格式的有限体积法建立数学模型并进行模拟分析。采用Riemann求解器对离散通量进行求解,同时在计算中引入对流项;采用MUSCL-Hancock方法进行重构得到二阶精度的Godunov格式,为了避免虚假振荡引入MINMOD斜率限制器;提出了虚拟边界的处理方法,实现了计算区域的所有节点和边界的统一计算。计算分析表明,虚拟边界法既保证了计算结果的精确性,又避免了边界处理的复杂性;一阶Godunov格式与传统的特征线法计算结果一致;当库朗特数小于1时,一阶Godunov格式和特征线法的瞬变压力可能出现严重的数值耗散,但二阶Godunov格式可有效抑制数值衰减从而得到更为准确稳定的计算结果;在马赫数很小的情况下,对流项对模拟结果的影响可忽略。

关 键 词:水锤;有限体积法;Godunov格式;Riemann求解器;MUSCL-Hancock方法;对流项;虚拟边界

Water hammer model based on finite volume method and Godunov-type scheme
ZHAO Yue,ZHOU Ling,LIU Deyou,ZHANG Yonghui,WANG Jiaze,CAO Yun and PAN Tianwen. Water hammer model based on finite volume method and Godunov-type scheme[J]. Advances in Science and Technology of Water Resources, 2019, 39(1): 76-81
Authors:ZHAO Yue  ZHOU Ling  LIU Deyou  ZHANG Yonghui  WANG Jiaze  CAO Yun  PAN Tianwen
Affiliation:College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China,College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China,College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China,Baishan Pumped Storage Power Station, State Grid Xinyuan Company Co., Ltd., Jilin 132013, China,Baishan Pumped Storage Power Station, State Grid Xinyuan Company Co., Ltd., Jilin 132013, China,College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China and College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
Abstract:Finite volume method with first order and second order Godunov schemes is presented to simulate and analyze the water hammer problem. Firstly, the Riemann solver is used to solve the discrete flux and the convection term is considered. MUSCL-Hancock method is used to reconstruct the second order precision Godunov scheme, while the MINMOD slope limiter is introduced to avoid spurious oscillations. The virtual boundary method is proposed to deal with the boundary calculations, which can realize a unified calculation scheme for all the nodes inside the computational domain and at the boundaries. Analysis shows that the virtual boundary method can ensure the accuracy of the calculation results, and it can also avoid the complexity of the boundary computation. The results predicted by the first-order Godunov scheme are identical with those from the Method of Characteristics(MOC). When the Courant number is less than one, the transient pressure calculated from the first-order Godunov scheme and the MOC scheme may appear serious numerical dissipation. However, the second-order Godunov scheme can effectively suppress numerical attenuation and obtain more accurate and stable results. In the cases with a low Maher number, the convection term can be neglected in simulations.
Keywords:water hammer   finite volume method   Godunov scheme   Riemann solver   MUSCL-Hancock method   convection term   virtual boundary
本文献已被 CNKI 等数据库收录!
点击此处可从《水利水电科技进展》浏览原始摘要信息
点击此处可从《水利水电科技进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号