首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群-BP神经网络算法的电价预测
引用本文:李娜,李郁侠. 基于粒子群-BP神经网络算法的电价预测[J]. 武汉大学学报(工学版), 2008, 41(4)
作者姓名:李娜  李郁侠
作者单位:西安理工大学,陕西,西安,710048
摘    要:为了解决现有电价预测中BP神经网络法对初始权值敏感、易陷入局部最小值和收敛速度慢等问题,在神经网络训练中引入基于全局随机优化思想的粒子群优化(PSO)算法,先利用PSO优化BP神经网络的初始权值,然后采用神经网络完成给定精度的学习,建立了粒子群-BP神经网络模型.与传统BP神经网络、粒子群广义神经网络相比,该方法收敛速度快、所需历史数据少、预报精度高,可用于电力系统的短期电价预测.

关 键 词:电力市场  电价预测  粒子群算法  BP神经网络

Electricity price forecast based on PSO-BP neural network
LI Na,LI Yuxia. Electricity price forecast based on PSO-BP neural network[J]. Engineering Journal of Wuhan University, 2008, 41(4)
Authors:LI Na  LI Yuxia
Abstract:In order to improve the problem in BP neural network of electricity price forecast at present which is sensitive with the initial weights,easy to fall into the local least value and have slow convergence speed etc.,the particle swarm optimization(PSO) algorithm based on the random global optimization is inducted into the network training;the particle swarm optimization algorithm is used for glancing study in order to confirm the initial values;then the neural network is used for given accuracy to found the PSO-BP neural network model.Comparing to the traditional BP neural network and PSO generalized regression neural network,the PSO-BP neural network model has the merits of faster convergence,needing fewer historical data,higher forecast precision etc.;and it can be used in the short-term electricity price forecast of electric power systems.
Keywords:electric power market  electricity price forecast  particle swarm optimization algorithm  BP neural network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号