首页 | 本学科首页   官方微博 | 高级检索  
     


Computationally efficient solution of population balance models incorporating nucleation, growth and coagulation: application to emulsion polymerization
Authors:Charles David Immanuel
Affiliation:Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
Abstract:A computationally efficient solution technique is presented for population balance models accounting for nucleation, growth and coagulation (aggregation) (with extensions for breakage). In contrast to earlier techniques, this technique is not based on approximating the population balance equation, but is based on employing individual rates of nucleation, growth and coagulation to update the PSD in a hierarchical framework. The method is comprised of two steps. The first step is the calculation of the rates of nucleation, growth and coagulation by solving an appropriate system of equations. This information is then used in the second step to update the PSD. The method effectively decomposes the fast and the slow kinetics, thereby eliminating the stiffness in the solution. In solving the coagulation kernel, a semi-analytical solution strategy is adapted, which substantially reduces the computational requirement, but also ensures the consistency of properties such as the number and mass of particles.
Keywords:Population balance model   Model reduction   Particle size distribution   Emulsion polymerization   Numerical solution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号