首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic fracture mechanics analysis of failure mode transitions along weakened interfaces in elastic solids
Authors:L Roy Xu  Ping Wang
Affiliation:Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, USA
Abstract:Dynamic fracture mechanics theory was employed to analyze the crack deflection behavior of dynamic mode-I cracks propagating towards inclined weak planes/interfaces in otherwise homogenous elastic solids. When the incident mode-I crack reached the weak interface, it kinked out of its original plane and continued to propagate along the weak interface. The dynamic stress intensity factors and the non-singular T-stresses of the incident cracks were fitted, and then dynamic fracture mechanics concepts were used to obtain the stress intensity factors of the kinked cracks as functions of kinking angles and crack tip speeds. The T-stress of the incident crack has a small positive value but the crack path was quite stable. In order to validate fracture mechanics predictions, the theoretical photoelasticity fringe patterns of the kinked cracks were compared with the recorded experimental fringes. Moreover, the mode mixity of the kinked crack was found to depend on the kinking angle and the crack tip speed. A weak interface will lead to a high mode-II component and a fast crack tip speed of the kinked mixed-mode crack.
Keywords:Crack kinking  Dynamic stress intensity factors  Failure mode transition  The T-stress  Mode mixity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号