首页 | 本学科首页   官方微博 | 高级检索  
     


Application of fuzzy Naive Bayes and a real-valued genetic algorithm in identification of fuzzy model
Affiliation:1. Department of Mechanical Engineering, American University in Dubai, Dubai, UAE;2. Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Abstract:We present a method to identify a fuzzy model from data by using the fuzzy Naive Bayes and a real-valued genetic algorithm. The identification of a fuzzy model is comprised of the extraction of “if–then” rules that is followed by the estimation of their parameters. The involved parameters include those which determine the membership function of fuzzy sets and the certainty factors of fuzzy if–then rules. In our method, as long as the fuzzy partition in the input–output space is given, the certainty factor of each rule is computed with the fuzzy conditional probability of the consequent conditioned on the antecedent by using the fuzzy Naive Bayes, which is a generalization of Naive Bayes. The fuzzy model involves the rules characterized by the highest values of certainty factors. The certainty factor of each rule is the fuzzy conditional probability, and it reflects the inner relationship between the antecedent and the consequent. In order to improve the accuracy of the fuzzy model, the real-valued genetic algorithm is incorporated into our identification process. This process concerns the optimization of the membership functions occurring in the rules. We just involve the parameters of membership function of the fuzzy sets into the real-valued genetic algorithm, since the certainty factor of each rule can be computed automatically. The performance of the model is shown for the backing-truck problem and the prediction of Mackey–Glass time series.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号