首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic hydrogen bubble template electrodeposition of Ru on amorphous Co support for electrochemical hydrogen evolution
Affiliation:1. School of Environmental Science and Engineering / Tianjin Key Lab of Biomass-wastes Utilization, Tianjin University, Tianjin 300072, China;2. Department of Civil Engineering, Pakistan Institute of Engineering Technology, Multan Pakistan;3. School of Engineering, The University of Toledo, Ohio, USA;4. School of Engineering RMIT University Melbourne Victoria 3000, Australia;5. School of Chemical Engineering of Technology, Tianjin University, Tianjin 300350, China;1. Department of Physics, School of Basics and Applied Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 626001, Tamil Nadu, India;2. Simulation Centre for Atomic and Nano MATerials(SCANMAT), Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 626001, Tamil Nadu, India;1. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, R8402AGP, S.C. de Bariloche, Río Negro, Argentina;2. Department of Chemistry, University of Burgos, 09001, Burgos, Spain;3. International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, 09001 Burgos, Spain;4. Universidad Nacional de Cuyo (Instituto Balseiro)-Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, R8402AGP, S.C. de Bariloche, Río Negro, Argentina
Abstract:Electrolyzing water is an environmentally friendly and renewable way to obtain high purity hydrogen. Ruthenium has strong water dissociation ability and suitable hydrogen adsorption energy, so it is considered as one of the candidates of excellent electrocatalysts for hydrogen evolution in alkaline solution. The dynamic hydrogen bubble template (DHBT) is a good electrodeposition technology, which can obtain the 3D metal foams. However, as far as we know, there is no report on the preparation of Ru electrocatalyst by the DBHT method. In this work, the trumpet-shaped Ru on amorphous cobalt support (T-Ru/a-Co) is prepared by the DHBT electrodeposition for the first time. The defect locations are uniformly distributed on the surface of amorphous cobalt (a-Co), which can effectively lead to the formation of nano-bubble template in the DHBT process. However, this special morphology cannot be obtained on the surface of crystalline Co (c-Co). In addition, the electronic structure of T-Ru/a-Co has also been obviously modified, in which the proportion of Ru4+/Ru0 in T-Ru/a-Co has increased, accompanied by the change of binding energy of Ru. It only needs an overpotential of 49 mV to obtain a current density of 10 mA cm−2 for the T-Ru/a-Co. The specific activity (SA), turnover frequency (TOF) and mass activity (MA) of T-Ru/a-Co are 0.23 mA cm−2, 0.48 s−1 and 0.24 A mg−1, which are both higher than those of Pt/C, the disk-shaped Ru on the c-Co support (D-Ru/c-Co) and Ru/C, respectively.
Keywords:Hydrogen evolution reaction  Dynamic hydrogen bubble template  Trumpet-shaped Ru  Amorphous Co
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号