首页 | 本学科首页   官方微博 | 高级检索  
     


New approaches to numerical modelling of droplet transient heating and evaporation
Affiliation:1. College of Industrial Technology, Nihon University 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan;2. Graduate School of Industrial Technology, Nihon University 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan;3. Graduate School of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan;4. Central Research Institute of Electric Power Industry 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan
Abstract:New approaches to numerical modelling of droplet heating and evaporation by convection and radiation from the surrounding hot gas are suggested. The finite thermal conductivity of droplets and recirculation in them are taken into account. These approaches are based on the incorporation of new analytical solutions of the heat conduction equation inside the droplets (constant or almost constant h) or replacement of the numerical solution of this equation by the numerical solution of the integral equation (arbitrary h). It is shown that the solution based on the assumption of constant convective heat transfer coefficient is the most computer efficient for implementation into numerical codes. This solution is applied to the first time step, using the initial distribution of temperature inside the droplet. The results of the analytical solution over this time step are used as the initial condition for the second time step etc. This approach is applied to the numerical modelling of fuel droplet heating and evaporation in conditions relevant to diesel engines, but without taking into account the effects of droplet break-up. It is shown to be more effective than the approach based on the numerical solution of the discretised heat conduction equation inside the droplet, and more accurate than the solution based on the parabolic temperature profile model. The relatively small contribution of thermal radiation to droplet heating and evaporation allows us to take it into account using a simplified model, which does not consider the variation of radiation absorption inside droplets.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号