首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of hydrogen flow rate on the synthesis of carbon nanofiber using microwave-assisted chemical vapour deposition with ferrocene as a catalyst
Affiliation:1. Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE-1410, Brunei Darussalam;2. University of Stuttgart, Institute of Chemical Technology, Faculty of Chemistry, D-70550, Stuttgart, Germany;3. South Ural State University (National Research University), Chelyabinsk, Russian Federation;4. Malaysia-Japan International Instute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia;5. Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida 201309, India;1. Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan;2. Natural Science Center for Basic Research & Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan;3. Centre for Renewable Energy & Storage, Suresh Gyan Vihar University, Jaipur, 3020217, India;4. Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan;1. Kocaeli University, Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies, 41140, Kocaeli, Turkey;2. Kocaeli University, Department of Mechanical Engineering, 41380 Kocaeli, Turkey;3. TUBITAK UME, Chemistry Group Laboratories, 41470, Gebze, Kocaeli, Turkey;4. Gebze Technical University, Department of Chemistry, Gebze, Kocaeli, Turkey;1. Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India;2. Department of Physical Sciences, Kakatiya Institute of Technology and Science, Warangal 506015, Telangana, India;3. School of Advanced Sciences, VIT-AP University (Amaravati Campus), Amaravati, Andhra Pradesh, 522237, India;1. Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India;2. Department of Mechanical Engineering, Institute of Engineering & Technology, Lucknow, 226021, India;3. Department of Mechanical Engineering, AL-Falah University, Faridabad, Haryana, India;4. Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida, 201309, India;1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam, India;2. School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Assam, India
Abstract:Carbon nanostructure materials are becoming of considerable commercial importance, with interest growing rapidly over the decade since the discovery of carbon nanofibers. In this study, a new novel method is introduced to synthesize the carbon nanofibers by gas-phase, where a single-stage microwave-assisted chemical vapour deposition approach is used with ferrocene as a catalyst and acetylene and hydrogen as precursor gases. Hydrogen flow rate plays a significant role in the formation of carbon nanofibers, as being the carrier and reactant gas in the floating catalyst method. The effect of process parameters such as microwave power, radiation time and gas ratio of C2H2/H2 was investigated statistically. The carbon nanofibers were characterized using scanning and transmission electron microscopy and thermogravimetric analysis. The analysis revealed that the optimized conditions for carbon nanofibers production were microwave power (1000 W), radiation time (35 min) and acetylene/hydrogen ratio (0.8). The field emission scanning electron microscope and transmission electron microscope analyses revealed that the vertical alignment of carbon nanofibers has tens of microns long with a uniform diameter ranging from 115 to 131 nm. High purity of 93% and a high yield of 12 g of CNFs were obtained. These outcomes indicate that identifying the optimal values for process parameters is important for synthesizing high quality and high CNF yield.
Keywords:Carbon nanofibers  Microwave heating  Chemical vapour deposition  Ferrocene catalyst  Precursor gases  CNF"}  {"#name":"keyword"  "$":{"id":"kwrd0040"}  "$$":[{"#name":"text"  "_":"Carbon nanofibers  MACVD"}  {"#name":"keyword"  "$":{"id":"kwrd0050"}  "$$":[{"#name":"text"  "_":"Microwave-assisted chemical vapour deposition  CCD"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"Central composite design  DOE"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"Design of experiments  FESEM"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"Field Emission Scanning Electron Microscope  HRTEM"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"High-Resolution Transmission Electron Microscope  TGA"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"Thermogravimetric Analysis  BET"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"Brunauer  Emmett and Teller  RS"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"Raman spectroscopy  ANOVA"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"Analysis of variance  MSE"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"Means square error  SSE"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"Sum of square error  DTG"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"Differential thermogravimetry  QP"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"Quadratic programming
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号