首页 | 本学科首页   官方微博 | 高级检索  
     


Remarkable improvement of photoelectrochemical water splitting in pristine and black anodic TiO2 nanotubes by enhancing microstructural ordering and uniformity
Affiliation:1. Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran;2. Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract:Efficient photoelectrochemical (PEC) water splitting is crucial for future energy and sustainable world. We here report on the improvement of PEC activity of anodic TiO2 nanotubes (TNTs) by enhancing tube ordering and subsequent electrochemical reduction. TNTs were prepared by two-step anodic oxidisation from an organic electrolyte containing fluoride ions. The effects of first-step anodisation time on the ordering of TNTs and subsequent electrolytic reduction were investigated on the PEC performance under simulated solar light spectrum. The photocurrent densities of TNTs anodised for 1 h, 4 h and subsequently reduced are about 25.12 μA cm?2, 51.76 μA cm?2 and 126.89 μA cm?2, respectively, at 1.23 V vs RHE and their conversion efficiency of light to electrical energy achieved are about 0.016%, 0.04% and 0.08% respectively. Electrochemical impedance spectroscopy (ESI) curves revealed the improved PEC water splitting confirmed by sharper charge carrier separation and enhanced charge transfer in highly ordered pristine and black TNTs. This improvement of PEC in dopant-free TNT is at the first instance interpreted by enhancing TNT ordering and uniformity achieved by prolonging of the first-step anodisation time and its effect on the electronic band structure of TNTs. This significant effect on PEC performance of pristine TNT under visible light absorption takes place due to the induced surface defects and slower recombination rates of hole and electron. This demonstrates an efficient economic materials production appraoch for PEC hydrogen production.
Keywords:Photoelectrochemical water splitting  Anodisation  Hydrogen production  pristine  black
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号