首页 | 本学科首页   官方微博 | 高级检索  
     


Mo/P doped NiFeSe as bifunctional electrocatalysts for overall water splitting
Affiliation:1. Faculty of Polymer Science, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran;2. Department of Mechanical Engineering and Materials, Universidad de Seville, P.O. Box 159163-4311, Seville, Spain;1. Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China;2. School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;1. College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China;2. College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, PR China;3. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China;1. Functional Materials and Components R&D Group, Korea Institute of Industrial Technology, Gangneung 25440, Republic of Korea;2. Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea;3. Research & Development Team, Korea Zinc Company, Ulsan 44997, Republic of Korea;4. Department of Chemistry – Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden;1. College of Electrical Information, Changchun Guanghua University, Changchun, Jilin, 130033, China;2. College of Mechanical and Electrical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, China;3. University of Tehran, Tehran, Iran;1. Key Laboratory for Nonferrous Materials (MOE), School of Materials Science and Engineering, Central South University, Changsha, 410083, China;2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Abstract:Designing high-efficiency catalysts for overall water splitting is critical to reduce the cost of hydrogen fuel as a clean and renewable energy source in future society. In this work, a Mo-, P-codoped NiFeSe was successfully synthesized on nickel foam (NF) by one-step electrodeposition. Through the doping strategy, the conductivity can be well promoted, and the production of nanosheets on the catalyst surface and active phases during hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) provided much more active sites, which leaded to efficient HER/OER performances of as-synthesized Mo-, P-codoped NiFeSe catalysts, i.e., a low overpotential of 100 mV/200 mV at current density of 10 mA cm−2 in 1.0 M KOH with stability of 95 h/60 h, respectively. It only required 1.53 V to deliver a current density of 10 mA cm−2 in overall water splitting and maintained outstanding durability for 100 h. This work is beneficial to future design of high efficient and low-cost bifunctional catalysts for overall water splitting.
Keywords:Hydrogen  Electrocatalyst  Bifunctional electrocatalyst  Overall water splitting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号