首页 | 本学科首页   官方微博 | 高级检索  
     


Burner-heated dehydrogenation of a liquid organic hydrogen carrier (LOHC) system
Affiliation:1. Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Am Weichselgarten 8, D-91058 Erlangen, Germany;2. Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, D-91052 Erlangen, Germany;3. Energie Campus Nürnberg, Fürther Str. 250, D-90429 Nürnberg, Germany;4. Institut für Thermodynamik, Professur für Energiewandlung, Fakultät für Luft-und Raumfahrttechnik, Universität der Bundeswehr München (UniBw M), Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany;5. Forschungszentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK 11), Egerlandstr. 3, D-91058, Erlangen, Germany;6. Lehrstuhl für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, D-91058, Erlangen, Germany;1. U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV, 26507-0880;2. NETL Support Contractor, 3610 Collins Ferry Road Morgantown, WV, 25607, USA;1. Department of Electrical Automation, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, China;2. Computer Department, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, China;3. Enrolment and Vocation Guidance Office, Hebei University of Water Resources and Electric Engineering, Cangzhou, 061001, China;4. Electrical Engineering Department, Sun-Life Company, Baku, Azerbaijan;1. Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, 2 Allée Camille Soula, Toulouse, France;2. Air Liquide Innovation Campus Paris, 1 Chemin de La Porte des Loges, Les Loges-en-Josas, France;1. Chemical-Technological Department, Samara State Technical University, 443100 Samara, Russia;2. Department of Physics, Tver State Medical University, 170100 Tver, Russia;3. Institute of Technical Thermodynamics, University of Rostock, Albert-Einstein Str. 2, 18059 Rostock, Germany;4. Competence Centre CALOR at the Department Life, Light & Matter of the Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany;5. Department of Physical Chemistry, Kazan Federal University, 420008 Kazan, Russia;1. Hamburg University of Technology, Institute of Environmental Technology and Energy Economics, Eißendorfer Str. 40, 21073, Hamburg, Germany;2. National Organisation Hydrogen and Fuel Cell Technology, Fasanenstr. 5, 10623, Berlin, Germany;1. Chemical and Biological Engineering Department, University of British Columbia, Vancouver, Canada;2. Chemical Engineering Department, Technical University of Munich, Munich, Germany
Abstract:For a hydrogen-based economy, safe and efficient hydrogen storage is essential. Compared to other chemical hydrogen storage technologies, such as ammonia or methanol, liquid organic hydrogen carrier (LOHC) systems allow for a reversible storage of hydrogen while being easy to handle in a diesel-like manner. In our contribution, we describe for the first time the successful utilization of the exhaust gas enthalpy of a porous media burner to directly supply the dehydrogenation heat for a kW-scale dehydrogenation of the hydrogen-rich LOHC compound perhydro dibenzyltoluene (H18-DBT). Our setup demonstrates the dynamics of the dehydrogenation unit at a realized maximum hydrogen power of 3.9 kWth, based on the lower heating value of the released hydrogen. For the intended applications with fluctuating hydrogen demand, e.g. a hydrogen refueling station (HRS) or stationary heating in buildings, a dynamic hydrogen supply from LOHC is important. Methane, e.g. from a biogas plant, is utilized in our scenario as a fuel source for the burner. Hydrogen is released within 30 min after cold start of the system. The dehydrogenation unit exhibits a power density relative to the reactor volume of about 0.5 kWtherm l?1 based on the lower heating value of the hydrogen and a catalyst productivity of up to 0.65 gH2 gPt?1 min?1 for hydrogen release from H18-DBT. An analysis of the by-products and reaction intermediates shows low by-product formation (e.g. maximum 0.6 wt.-% for high boilers and 0.9 wt.- % for low boilers) and uniform distribution of intermediates after the reaction. Thus, a relatively homogeneous temperature distribution and a uniform LOHC flow in the reaction zone can be assumed. Our findings illustrate the dynamics (heating rates of about 10 K min?1) and performance of direct heating of a release unit with a burner and represent a significant step towards LOHC-based hydrogen provisioning systems at technically relevant scales.
Keywords:Hydrogen storage  LOHC  Dynamic heat supply  Dehydrogenation  Porous media burner
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号