首页 | 本学科首页   官方微博 | 高级检索  
     

基于GBDT和SVM的光伏发电出力预测研究
引用本文:郎庆凯,王兴勋,王月香,吴琼. 基于GBDT和SVM的光伏发电出力预测研究[J]. 上海电力学院学报, 2023, 39(3): 275-280
作者姓名:郎庆凯  王兴勋  王月香  吴琼
作者单位:北京国网富达科技发展有限责任公司
摘    要:梯度提升决策树(GBDT)和支持向量机(SVM)是预测光伏出力的两种常用算法。分析了光伏发电出力的影响因素,介绍了GBDT算法和SVM算法的原理,以及基于两种算法的光伏出力预测模型的流程,并进行对比分析。实验结果表明,基于GBDT算法的光伏出力预测模型的平均绝对相对误差和均方根误差都较小,预测效果更好。

关 键 词:光伏发电  出力预测  梯度提升决策树  支持向量机
收稿时间:2022-11-21

Research on Photovoltaic Output Prediction Based on GBDT and SVM
LANG Qingkai,WANG Xingxun,WANG Yuexiang,WU Qiong. Research on Photovoltaic Output Prediction Based on GBDT and SVM[J]. Journal of Shanghai University of Electric Power, 2023, 39(3): 275-280
Authors:LANG Qingkai  WANG Xingxun  WANG Yuexiang  WU Qiong
Affiliation:Beijing Guowang Fuda Science & Technology Development Co., Ltd., Beijing 100070, China
Abstract:Gradient boosting decision tree(GBDT) and support vector machine(SVM) are two common algorithms for forecasting photovoltaic output.This paper analyzes the influencing factors of photovoltaic power generation output, introduces the GBDT algorithm and SVM algorithm mechanism and the flow of photovaltaic output prediction model based on these two algorithms and makes comparative analysis.The test results show that the average absolute relative error and root mean square error of gradient boosting decision tree algorithm are smaller, and the forecasting effect is better.
Keywords:photovoltaic power generation  output forecast  gradient boosting decision tree  support vector machine
点击此处可从《上海电力学院学报》浏览原始摘要信息
点击此处可从《上海电力学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号