首页 | 本学科首页   官方微博 | 高级检索  
     

基于sEMG信号的关节力矩NARX预测模型
引用本文:刘 强,李玉榕,杜国川,连章汇. 基于sEMG信号的关节力矩NARX预测模型[J]. 仪器仪表学报, 2022, 43(11): 123-131
作者姓名:刘 强  李玉榕  杜国川  连章汇
作者单位:1. 福州大学电气工程与自动化学院,2. 福建省医疗器械和医药技术重点实验室
基金项目:国家自然科学基金(61773124)项目资助
摘    要:为解决利用力矩传感器控制肌力训练设备所带来的滞后性,利用表面肌电信号(sEMG)超前于运动的特性,设计了基于一组拮抗肌表面肌电信号的关节力矩预测模型。首先搭建康复训练设备为信号采集和实验验证提供条件。将sEMG经过预处理,选择sEMG信号的方差特征作为神经网络输入,利用带有外部输入的非线性自回归(NARX)模型的动态循环神经网络,分别建立了基于关节力矩实际值的超前多步(MSA)预测模型和基于模型预测输出(MPO)的预测模型,通过等张和等长测试实验,比较了MSA和MPO模型的力矩预测性能。实验结果表明,两种模型输出预测值和实际值之间都有极强关联性(皮尔逊相关系数均大于0.95)。随着超前预测的步数增加,MSA模型的预测精度降低,但是超前预测的时间增大。在等张和等长测试中,当超前步数分别小于29和35时,MSA预测精度显著高于MPO(p<0.05),但MPO模型在成本和体积上更具优势。综上所述,两种模型均可以准确预测关节力矩,在实际康复训练设备控制中,可根据应用需求选择不同的力矩预测模型。

关 键 词:sEMG  NARX  多步超前预测模型  模型预测输出

NARX prediction model of joint torque based on sEMG signal
Liu Qiang,Li Yurong,Du Guochuan,Lian Zhanghui. NARX prediction model of joint torque based on sEMG signal[J]. Chinese Journal of Scientific Instrument, 2022, 43(11): 123-131
Authors:Liu Qiang  Li Yurong  Du Guochuan  Lian Zhanghui
Affiliation:1. College of Electrical Engineering and Automation, Fuzhou University,2. Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology
Abstract:To solve the hysteresis caused by using torque sensors to control muscle force training equipment, a joint torque predictionmodel based on a group of antagonistic surface electromyography (sEMG) is designed in this article. Firstly, the rehabilitation trainingequipment is built to provide conditions for signal acquisition and experimental verification. sEMG is preprocessed and the variancecharacteristic of sEMG signal is selected as the neural network input. In addition, a dynamic recurrent neural network with the nonlinearauto-regressive model with exogenous inputs (NARX) is used in this study. A multi-step ahead prediction model (MSA) based on theactual values of joint moments and another model based on model prediction output ( MPO) are developed respectively. The torqueprediction performance of MSA and MPO models is compared by isotonic and isometric test experiments. Experimental results show thatthere is a strong correlation between the predicted output value and the actual output value of the two models ( Pearson correlationcoefficient is greater than 0. 95). As the number of advance prediction steps increases, the prediction accuracy of MSA model decreases.However, the advance prediction time increases. When n is less than 29 and 35, the prediction accuracy of MSA is significantly higherthan that of MPO (p <0. 05). But the MPO model has advantages in cost and size. In summary, two models proposed in this article canaccurately predict joint torques. In actual rehabilitation training equipment control, different torque prediction models can be selectedaccording to application requirements.
Keywords:sEMG   NARX   multi-step ahead prediction model   model prediction output
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号