首页 | 本学科首页   官方微博 | 高级检索  
     

基于网络社区发现的标签传播聚类算法
引用本文:吴清寿,郭磊,余文森. 基于网络社区发现的标签传播聚类算法[J]. 计算机系统应用, 2020, 29(12): 135-143
作者姓名:吴清寿  郭磊  余文森
作者单位:武夷学院数学与计算机学院,武夷山 354300;武夷学院认知计算与智能信息处理福建省高校重点实验室,武夷山 354300;智慧农林福建省高校重点实验室,福州 350002;武夷学院数学与计算机学院,武夷山 354300;武夷学院认知计算与智能信息处理福建省高校重点实验室,武夷山 354300
基金项目:福建省自然科学基金(2019J01835); 认知计算与智能信息处理福建省高校重点实验室开放课题基金(KLCCIIP2018107); 智慧农林福建省高校重点实验室开放课题基金(2019LSAF03); 福建省中青年教师教育科研项目(JAT170608); 中央引导地方科技专项(2018L3013); 武夷学院校科研基金(XL1201)
摘    要:高维数据的聚类特性通常难以直接观测.将其构建为复杂网络,节点间的拓扑结构可以反映样本之间的关系.对网络中的节点进行社区发现,可实现对数据更直观的聚类.提出一种基于网络社区发现的低随机性标签传播聚类算法.首先,用半径和最近邻方法将数据集构建为稀疏的全连通网络.之后,根据节点相似度进行节点标签预处理,使得相似的节点具有相同的标签.用节点的影响力值改进标签传播过程,降低标签选择的随机性.最后,基于内聚度进行社区的优化合并,提高社区的质量.在真实数据集和人工数据集上的实验结果表明,该算法对各种类型的数据都具有较好的适应性.

关 键 词:聚类  网络构建  社区发现  标签传播
收稿时间:2020-04-24
修稿时间:2020-05-21

Label Propagation Clustering Algorithm Based on Network Community Detection
WU Qing-Shou,GUO Lei,YU Wen-Sen. Label Propagation Clustering Algorithm Based on Network Community Detection[J]. Computer Systems& Applications, 2020, 29(12): 135-143
Authors:WU Qing-Shou  GUO Lei  YU Wen-Sen
Affiliation:School of Mathematics and Computer Science, Wuyi University, Wuyishan 354300, China;Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyi University, Wuyishan 354300, China;Key Laboratory of Smart Agriculture and Forestry of Fujian Education Institutions (Fujian Agriculture and Forestry University), Fuzhou 350002, China
Abstract:The clustering characteristics of high-dimensional data are usually difficult to observe directly. Constructing it into a complex network, the topological structure of the network nodes can reflect the relationship between samples. Community detection of nodes in the network can achieve more intuitive clustering of data. A low randomness label propagation clustering algorithm based on network community detection is proposed. First, the data set is constructed as a sparse fully connected network using the radius and nearest neighbor methods. Then, according to the similarity of the nodes, the node labels are preprocessed to make the similar nodes have the same labels. The influence value of the nodes is used to improve the label propagation process and reduce the randomness of label selection. Finally, based on the cohesion, the community is optimized and merged to improve the quality of the community. The experimental results on real data sets and artificial data sets show that the algorithm has better adaptability to all kinds of data.
Keywords:clustering  complex network  community detection  label propagation
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号