首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯优化XGBoost的短期峰值负荷预测
引用本文:龚雪娇,朱瑞金,唐波. 基于贝叶斯优化XGBoost的短期峰值负荷预测[J]. 电力工程技术, 2020, 39(6): 76-81
作者姓名:龚雪娇  朱瑞金  唐波
作者单位:西藏农牧学院电气工程学院,西藏农牧学院电气工程学院,西藏农牧学院电气工程学院
基金项目:西藏自治区自然科学基金(厅校联合基金)(XZ2019ZRG-52(Z))
摘    要:随着电网结构愈发复杂,负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能力和精度要求。然而,传统算法存在容易过拟合、精度低等固有缺陷,难以实现复杂电网下精准的尖峰负荷预测。为此,本文提出了一种基于贝叶斯优化XGBoost的模型用于短期峰值负荷预测。首先通过特征重要度得分进行特征提取,剔除冗余特征,确保输入-输出有较优的映射关系;其次引入贝叶斯优化算法进行超参数调优,使得XGBoost的性能达到最佳状态。最后,使用中国某市电力负荷数据对所提模型的有效性进行验证,算例结果表明,与其它机器学习方法相比,贝叶斯优化XGBoost具有更高的预测精度。

关 键 词:贝叶斯优化  XGBoost算法  峰值负荷  电力系统  超参数
收稿时间:2020-08-13
修稿时间:2020-10-04

Short-term peak load forecasting based on Bayesian optimization XGBoost
GONG Xuejiao,ZHU Ruijin,TANG Bo. Short-term peak load forecasting based on Bayesian optimization XGBoost[J]. Electric Power Engineering Technology, 2020, 39(6): 76-81
Authors:GONG Xuejiao  ZHU Ruijin  TANG Bo
Affiliation:Electric Engineering College,Tibet Agriculture Animal Husbandry University. linzhi 860000;China,Electric Engineering College,Tibet Agriculture Animal Husbandry University. linzhi 860000;China,Electric Engineering College,Tibet Agriculture Animal Husbandry University. linzhi 860000;China
Abstract:With the increasing complexity of the integrated load structure of power grid, the diversity and volatility of the load increase significantly, and higher generalization ability and accuracy were required for the prediction model. However, the traditional algorithms have inherent defects such as easy overfitting and low accuracy, making it difficult to achieve accurate peak load forecasting under complex grids. To solve the above problems, this paper proposed a Bayesian optimized XGBoost model for short-term peak load forecasting. Firstly, the important features were screened through feature importance score to ensure a better mapping relationship between input and output. Then, Bayesian optimization algorithm was introduced to determine the hyper-parameters to ensure the performance of XGBoost reached the best state. the effectiveness of the proposed model is verified using power load data of a certain city in China, and The results show that Bayesian optimized XGBoost has higher prediction accuracy compared with other machine learning methods.
Keywords:Bayesian optimization   XGBoost algorithm   peak load   power system   hyper-parameter
点击此处可从《电力工程技术》浏览原始摘要信息
点击此处可从《电力工程技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号