首页 | 本学科首页   官方微博 | 高级检索  
     


Next‐generation global satellite system with mega‐constellations
Authors:Channasandra Ravishankar  Rajeev Gopal  Nassir BenAmmar  Gaguk Zakaria  Xiaoling Huang
Abstract:Mega satellite constellations in low earth orbit (LEO) will provide complete global coverage; rapidly enhance overall capacity, even for unserved areas; and improve the quality of service (QoS) possible with lower signal propagation delays. Complemented by medium earth orbit (MEO) and geostationary earth orbit (GEO) satellites and terrestrial network components under a hybrid communications architecture, these constellations will enable universal 5G service across the world while supporting diverse 5G use cases. With an unobstructed line‐of‐sight visibility of approximately 3 min, a typical LEO satellite requires efficient user terminal (UT), satellite, gateway, and intersatellite link handovers. A comprehensive mobility design for mega‐constellations involves cost‐effective space and ground phased‐array antennas for responsive and seamless tracking. An end‐to‐end multilayer protocol architecture spanning space and terrestrial technologies can be used to analyze and ensure QoS and mobility. A scalable routing and traffic engineering design based on software‐defined networking adequately handles continuous variability in network topology, differentiated user demands, and traffic transport in both temporal and spatial dimensions. The space‐based networks involving mega‐constellations will be better integrated with their terrestrial counterparts by fully leveraging the multilayer 5G framework, which is the foundational feature of our hybrid architecture.
Keywords:5G  LEO/MEO constellation  mobility  phased‐array antenna  QoS  routing  software‐defined networking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号