首页 | 本学科首页   官方微博 | 高级检索  
     

机器人抓取检测技术的研究现状
引用本文:刘亚欣,王斯瑶,姚玉峰,杨熹,钟鸣. 机器人抓取检测技术的研究现状[J]. 控制与决策, 2020, 35(12): 2817-2828
作者姓名:刘亚欣  王斯瑶  姚玉峰  杨熹  钟鸣
作者单位:哈尔滨工业大学(威海)船舶与海洋工程学院,山东威海264209;威海市机器人与智能装备产业研究院,山东威海264209;哈尔滨工业大学(威海)船舶与海洋工程学院,山东威海264209
基金项目:国家重点研发计划项目(2018YFB1309400);山东省重点研发计划项目(2016GGX101013);威海市大学共建项目(2016DXGJMS04).
摘    要:作为机器人在工厂、家居等环境中最常用的基础动作,机器人自主抓取有着广泛的应用前景,近十年来研究人员对其给予了较高的关注,然而,在非结构环境下任意物体任意姿态的准确抓取仍然是一项具有挑战性和复杂性的研究.机器人抓取涉及3个主要方面:检测、规划和控制.作为第1步,检测物体并生成抓取位姿是成功抓取的前提,有助于后续抓取路径的规划和整个抓取动作的实现.鉴于此,以检测为主进行文献综述,从分析法和经验法两大方面介绍抓取检测技术,从是否具有抓取物体先验知识的角度出发,将经验法分成已知物体和未知物体的抓取,并详细描述未知物体抓取中每种分类所包含的典型抓取检测方法及其相关特点.最后展望机器人抓取检测技术的发展方向,为相关研究提供一定的参考.

关 键 词:机器人  抓取检测  经验法  未知物体  深度学习

Recent researches on robot autonomous grasp technology
LIU Ya-xin,WANG Si-yao,YAO Yu-feng,YANG Xi,ZHONG Ming. Recent researches on robot autonomous grasp technology[J]. Control and Decision, 2020, 35(12): 2817-2828
Authors:LIU Ya-xin  WANG Si-yao  YAO Yu-feng  YANG Xi  ZHONG Ming
Affiliation:School of Naval Architecture and Ocean Engineering,Harbin Institute of Technology,Weihai264209,China;Industrial Research Institute of Robotics and Intelligent Equipment at Weihai,Weihai264209,China
Abstract:As the most common and basic robotic movement in environment such as factory and household, the autonomous grasping has various application prospect. Although researchers have paid higher attention to the robot autonomous grasping in recent decades, grasping arbitrary objects accurately with arbitrary poses in non-structural environment is still a challenging and complex study. The robot grasping involves three main aspects: sensing, planning and controlling. The first step is detecting the targeted object and generating the grasping pose. It is the precondition of the successful grasp that helps achieve the grasp path planning and the entire grasp movement. The literature review in this study is mainly based on sensing. Firstly, the grasping technology is introduced from two aspects: analytical method and empirical method, and the empirical method is divided into the grasping of known objects and unknown objects from the perspective of whether there is prior knowledge of grasping objects. Moreover, the typical grasping methods and their related features contained in each category of unknown object grasping is detailly described. Finally, the development direction of robotic grasp detection technology is prospected with the aim of providing references for the relevant researchers.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号