An automatic adaptive refinement procedure for the reproducing kernel particle method. Part II: Adaptive refinement |
| |
Authors: | C. K. Lee Y. Y. Shuai |
| |
Affiliation: | (1) School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore;(2) The College of Civil Engineering, Science Building, HoHai University, Xikang Road, Nanjing, 210098, People’s Republic of China |
| |
Abstract: | In Part II of this study, an automatic adaptive refinement procedure using the reproducing kernel particle method (RKPM) for the solution of 2D linear boundary value problems is suggested. Based in the theoretical development and the numerical experiments done in Part I of this study, the Zienkiewicz and Zhu (Z–Z) error estimation scheme is combined with a new stress recovery procedure for the a posteriori error estimation of the adaptive refinement procedure. By considering the a priori convergence rate of the RKPM and the estimated error norm, an adaptive refinement strategy for the determination of optimal point distribution is proposed. In the suggested adaptive refinement scheme, the local refinement indicators used are computed by considering the partition of unity property of the RKPM shape functions. In addition, a simple but effective variable support size definition scheme is suggested to ensure the robustness of the adaptive RKPM procedure. The performance of the suggested adaptive procedure is tested by using it to solve several benchmark problems. Numerical results indicated that the suggested refinement scheme can lead to the generation of nearly optimal meshes for both smooth and singular problems. The optimal convergence rate of the RKPM is restored and thus the effectivity indices of the Z–Z error estimator are converging to the ideal value of unity as the meshes are refined. |
| |
Keywords: | Reproducing kernel particle method Stress recovery procedure A posteriori error estimation Adaptive refinement |
本文献已被 SpringerLink 等数据库收录! |
|