首页 | 本学科首页   官方微博 | 高级检索  
     

WANN模型的改进及日径流预测中的应用
引用本文:沙玉祥,缪 韧. WANN模型的改进及日径流预测中的应用[J]. 电网与水力发电进展, 2009, 25(7): 77-80
作者姓名:沙玉祥  缪 韧
作者单位:四川大学 水利水电学院,成都 610065;四川大学 水利水电学院,成都 610065
摘    要:介绍基于小波分析建立的人工神经网络模型的方法原理,并给出构造模型的一般步骤及关键算法。针对一般BP算法收敛速度慢,易陷入局部极小值的缺陷,受Fletcher—Reeves线性搜索方法的启发.提出基于改进共轭梯度法的BP算法。利用此优化模型对日径流进行模拟与预测,实验表明,基于小波分析的人工神经网络模型在日径流模拟过程中具有很好的仿真能力.训练后的模型用于预测具有较高的精度。

关 键 词:小波分析  人工神经网络(ANN)  共轭梯度法  日径流

Improvement of WANN Model and Its Application to Daily Runoff Forecasting
SHA Yu-xiang and MIAO Ren. Improvement of WANN Model and Its Application to Daily Runoff Forecasting[J]. Advance of Power System & Hydroelectric Engineering, 2009, 25(7): 77-80
Authors:SHA Yu-xiang and MIAO Ren
Affiliation:Sichuan University, College of Water Resources and Hydro-Electricity, Chengdu 610065, Sichuan Province, China;Sichuan University, College of Water Resources and Hydro-Electricity, Chengdu 610065, Sichuan Province, China
Abstract:The principle of artificial neural network model based on wavelet analysis was introduced, and the general steps and key algorithm of the model were expounded. Dealing with the defects of the steepest descent and slowly converging, easy to immerging in partial minimum frequently, after analyzing the linear hunting method developed by Fletcher and Reeves, the improvement was made of conjugating gradient with BP algorithm to solve the problem. After training, when the model used to simulate and forecast daily runoff, it was shown by numerical experiments that the model has better capability of simulation for the process of daily runoff with higher accuracy.
Keywords:wavelet analysis  artificial neural network (ANN)  conjugate gradient  daily runoff
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《电网与水力发电进展》浏览原始摘要信息
点击此处可从《电网与水力发电进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号