首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical investigation of the sinusoidal model for elastic layers in line contact
Authors:MJ Jaffar
Affiliation:aDepartment of Mathematical Sciences, De Montfort University The Gateway, Leicester LE1 9BH, U.K.
Abstract:Distributions of normal stresses and surface deformations, induced when an elastic layer of finite thickness is indented by a frictionless rough rigid flat or cylindrical indenter, are calculated numerically. It is assumed that the punch has a sinusoidal roughness superimposed on its nominal profile. Two cases will be examined, namely when the elastic layer is either bonded to a rigid backing or resting on a frictionless rigid backing (unbonded). Chebyshev polynomials of the first kind Tn(x) are utilized to model both the unknown pressure and the given deformation over the contact area. The governing elasticity equation is thereby reduced to a finite set of linear equations and hence a complete solution is found. The present numerical method is simple, accurate and valid in the full range of Poisson's ratio 0 v 0.5. Moreover, a set of semi-analytical solutions for the contact pressure is obtained for both thin unbonded and bonded elastic layers. The numerical results compared favourably with the asymptotic solutions. The effects of the layer thickness, layer compressibility and roughness amplitude parameters on the contact stresses and deformations are considered.
Keywords:sinusoidal model  Chebyshev polynomials  rough punch  bonded and unbonded elastic layers
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号