首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of foliar pigment concentration in floating macrophytes using hyperspectral vegetation indices
Authors:Cameron Proctor  Yuhong He
Affiliation:1. Department of Geography, University of Toronto Mississauga, Mississauga, ON, Canada, L5L 1C6cameron.proctor@utoronto.ca;3. Department of Geography, University of Toronto Mississauga, Mississauga, ON, Canada, L5L 1C6
Abstract:Foliar pigment concentrations of chlorophylls and cartenoids are important indicators of plant physiological status, photosynthesis rate, and net primary productivity. Although the utility of hyperspectral derived vegetation indices for estimating foliar pigment concentration has been documented for many vegetation types, floating macrophytes have not been assessed despite their ecological importance. This study surveyed 39 wetland species (12 floating macrophytes (FM), 8 grasses/sedges/rushes (GSR), and 19 herbs/wildflowers (HWF)) to determine whether foliar pigment concentrations could be estimated from hyperspectral reflectance. Hyperspectral reflectance of samples was recorded using an ASD FieldSpec3 Max portable spectroradiometer with the plant probe attachment or via a typical laboratory set-up. A semi-empirical relationship was established using either a linear, second-degree polynomial or logarithmic function between 13 candidate vegetation indices and chl-a, chl-b, Car, and chl-a + b pigment concentrations. Vegetation indices R-M, CI-Red, and MTCI were strongly correlated with foliar pigment concentrations using a linear fitting function. Chl-a + b and chl-b concentrations for all samples were reasonably estimated by the R-M index (R2 = 0.66 and 0.64), although Chl-a and Car concentration estimates using CI-Red were weaker (R2 = 0.63 and 0.51). Regression results indicate that pooled samples to estimate individual foliar pigments were less correlated than when each type of vegetation type was treated separately. For instance, chl-a + b was best estimated by CI-Red for FM (R2 = 0.80), MTCI for HWF (R2 = 0.77), and R-M for GSR (R2 = 0.67). Although floating macrophytes feature unique adaptions to their aquatic environment, their foliar pigment concentrations and spectral signatures were comparable to other wetland vegetation types. Overall, vegetation indices that exploit the red-edge region were a reasonable compromise, having good explanatory power for estimation of foliar pigments across the sampled wetland vegetation types and with CI-Red the best suited index for floating macrophytes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号