在线序列主动学习方法 |
| |
作者姓名: | 翟俊海 臧立光 张素芳 |
| |
作者单位: | 河北大学数学与信息科学学院河北省机器学习与计算智能重点实验室 保定071002,河北大学计算机科学与技术学院 保定071002,中国气象局气象干部培训学院河北分院 保定071000 |
| |
基金项目: | 本文受国家自然科学基金项目(71371063),河北省自然科学基金项目(F2013201220),河北省高等学校科学技术研究重点项目(ZD20131028),河北省高等学校科学技术研究项目(QN20131153)资助 |
| |
摘 要: | 现实世界中存在着大量无类标的数据,如各种医疗图像数据、网页数据等。在大数据时代,这种情况更加突出。标注这些无类标的数据需要付出巨大的代价。主动学习是解决这一问题的有效手段,也是近几年机器学习和数据挖掘领域中的一个研究热点。提出了一种基于在线序列极限学习机的主动学习算法,该算法利用在线序列极限学习机增量学习的特点,可显著提高学习系统的效率。另外,该算法用样例熵作为启发式度量无类标样例的重要性,用K-近邻分类器作为Oracle标注选出的无类标样例的类别。实验结果显示,提出的算法具有学习速度快、标注准确的特点。
|
关 键 词: | 主动学习 极限学习机 在线序列学习 样例熵 K-近邻 |
收稿时间: | 2015-08-31 |
修稿时间: | 2015-11-02 |
|
|