首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of nitric oxide in cultured prevertebral sympathetic ganglion neurons
Authors:KN Browning  ZL Zheng  DL Kreulen  RA Travagli
Affiliation:Department of Physiology, West Virginia University School of Medicine Morgantown, West Virginia 26506-9229, USA.
Abstract:The effects of the nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), were tested on cultured dissociated guinea pig celiac ganglion neurons using whole cell patch-clamp recordings. S-nitrosoacetylpenicillamine induced a concentration- and voltage-dependent inwardly directed shift in holding current (inward current shift) in 89% of neurons. The inward current shift was prevented by pre-treatment with the nitric oxide scavenger reduced hemoglobin and was abolished by intra- or extracellular cesium. The amplitude of the inward current shift was also sensitive to the extracellular potassium concentration. The S-nitrosoacetylpenicillamine-induced inward current shift was mediated by a decrease in calcium-dependent potassium currents (IAHPs); apamin (100 nM), charybdotoxin (10 nM) or tetraethylammonium (5 mM) reduced but did not abolish the amplitude of its inward current shift and a combination of apamin and tetraethylammonium abolished the S-nitrosoacetylpenicillamine-induced inward current response. In the presence of extracellular cobalt, SNAP produced an outward current that was concentration- and voltage-dependent, abolished by reduced hemoglobin and extracellular cesium and reduced by 4-AP (1 mM); in the absence of cobalt, 4-AP increased the SNAP-induced inward current shift. These data indicate that NO exerts dual opposing effects on neuronal potassium conductances, namely an inward current shift mediated through an inhibition of IAHP and induction of an outward current mediated by activation of the potassium delayed rectifier.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号