首页 | 本学科首页   官方微博 | 高级检索  
     

纳米晶硅多层薄膜的低温调控及其发光特性
引用本文:李云,高东泽,焦玉骁,张博惠,许贺菊,赵蔚,于威,路万兵,李晓苇.纳米晶硅多层薄膜的低温调控及其发光特性[J].化工进展,2018,37(4):1516-1521.
作者姓名:李云  高东泽  焦玉骁  张博惠  许贺菊  赵蔚  于威  路万兵  李晓苇
作者单位:1.河北大学物理科学与技术学院, 河北 保定 071000;2.华北理工大学理学院, 河北 唐山 063009;3.河北工程大学数理学院, 河北 邯郸 056038
基金项目:国家自然科学基金青年基金(61504036),河北省自然科学基金青年基金(A2016201087),河北省科技计划(13214315),国家自然科学基金(11504078)及河北省高等学校科学技术研究项目(Z2015121)。
摘    要:采用单-双靶交替溅射法低温沉积了纳米晶硅多层薄膜(nc-SiOx/a-SiOx),通过改变a-SiOx势垒层的厚度和化学成分比例,实现了纳米晶硅多层薄膜的低温过程控制。透射电子显微镜(TEM)结果显示,a-SiOx层太薄,不能有效阻断纳米硅生长,导致多层周期结构在后期沉积过程中受到破坏;增加a-SiOx层厚度,周期性结构生长得以实现,但仍有部分纳米硅穿透a-SiOx势垒层;傅里叶变换红外光谱(FTIR)分析表明,薄膜中的氧化反应以及活性氢对物相分离过程的促进作用均对纳米硅生长有影响。进而增加a-SiOx层氧含量,纳米硅的纵向生长被成功阻断。在此基础上,通过调整nc-SiOx层厚度实现了薄膜光学带隙调整和纳米硅粒度控制。光吸收谱分析显示,随nc-SiOx层厚度的增加,薄膜光学带隙逐渐减小;光致发光谱表明,多层周期结构实现了纳米硅尺寸的调控,粒子尺寸为几个纳米的纳米硅表现出了较强的发光,发光机制为量子限制效应-缺陷态复合发光。

关 键 词:纳米晶硅  多层薄膜  显微结构  低温过程控制  纳米粒子  光致发光  
收稿时间:2017-06-21

Low temperature preparation and luminescence properties of nanocrystalline silicon multilayer films
LI Yun,GAO Dongze,JIAO Yuxiao,ZHANG Bohui,XU Heju,ZHAO Wei,YU Wei,LU Wanbing,LI Xiaowei.Low temperature preparation and luminescence properties of nanocrystalline silicon multilayer films[J].Chemical Industry and Engineering Progress,2018,37(4):1516-1521.
Authors:LI Yun  GAO Dongze  JIAO Yuxiao  ZHANG Bohui  XU Heju  ZHAO Wei  YU Wei  LU Wanbing  LI Xiaowei
Affiliation:1 College of Physics Science and Technology, Hebei University, Baoding 071000, Hebei, China;
2 College of Science, North China University of Science and Technology, Tangshan 063009, Hebei, China;
3 School of Science, Hebei University of Engineering, Handan 056038, Hebei, China
Abstract:The nanocrystalline silicon multilayers(nc-SiOx/a-SiOx) were deposited at low temperature by single-double target alternating sputtering technology. The thickness and the chemical composition of the a-SiOx barrier layers were regulated to control the multilayers' microstructure. Transmission electron microscopy(TEM) analysis showed that the periodic structure was disrupted during the later deposition process because the a-SiOx layer was too thin to effectively block the growth of nc-Si. The multilayer structure was successfully prepared by increasing the thickness of the a-SiOx layer,however,there were still a part of nc-Si particles penetrating the barrier layer. Fourier transform infrared(FTIR) spectra showed that the oxidation reaction in the film and the active hydrogen atom effected on the growth of nc-Si. Therefore,the oxygen content of the a-SiOx layer was increased which further blocked the growth of the nc-Si. Then,the film optical bandgap was adjusted and nc-Si particles size was controlled by regulating the thickness of nc-SiOx layer. The absorption spectra showed that the optical bandgap of the film decreased with the increase of the nc-SiOx layer thickness. The photoluminescence(PL) spectra showed that the multilayer structure was regulated by controlling nc-SiOx layer thickness,and the resultant nc-Si with several nanometer produced a strong luminescence,which was attributed to a complex quantum confinement effect and the defect state luminescence mechanism.
Keywords:nanocrystalline silicon  multilayers  microstructure  low temperature process control  nanoparticles  photoluminescence  
本文献已被 CNKI 等数据库收录!
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号