首页 | 本学科首页   官方微博 | 高级检索  
     

灰色粒子群自适应卫星钟差预报方法
引用本文:李源,战兴群,梅浩,刘宝玉.灰色粒子群自适应卫星钟差预报方法[J].哈尔滨工业大学学报,2018,50(4):71-77.
作者姓名:李源  战兴群  梅浩  刘宝玉
作者单位:上海交通大学航空航天学院
基金项目:面向我国中东部地区的相位增强运行服务系统研制与应用示范项目(2014AA123103)
摘    要:高精度卫星钟差预报是当前接收机实时精密单点定位技术(Real-time precise point positioning,RT-PPP)亟需解决的关键技术难题之一.为找到一种基于小样本钟差序列的快速高精度卫星钟差预报方法,在分析常规GM(1,1)灰色模型(grey model)缺点的基础上对其进行了改进,提出了PGM(1,1)模型(particle swarm optimization-grey model)及其算法.该模型利用最新量测值进行初始化,然后通过引入遗忘因子的最小二乘法对新旧信息进行加权处理;再引入优化因子对模型系数进行调节,以归一化的平均相对误差作为精度检验标准,采用粒子群算法对其自适应寻优.最后选取了5颗钟差变化典型的GPS(global positioning system)卫星原子钟进行1 d内的精密钟差预报实验.结果表明,相对于常规GM(1,1)灰色模型和常规二次项拟合模型,所提出的模型及其算法预报精度有显著提升,其平均预报残差达到了亚纳秒级,且所需训练样本小.因此,该预报模型可以应用于卫星钟差快速精准预报.

关 键 词:卫星钟差预报  灰色理论  遗忘因子  粒子群寻优  自适应
收稿时间:2016/10/11 0:00:00

Particle swarm adaptive satellite clock error prediction model based on grey theory
LI Yuan,ZHAN Xingqun,MEI Hao and LIU Baoyu.Particle swarm adaptive satellite clock error prediction model based on grey theory[J].Journal of Harbin Institute of Technology,2018,50(4):71-77.
Authors:LI Yuan  ZHAN Xingqun  MEI Hao and LIU Baoyu
Abstract:The high precision satellite clock error prediction is one of the key technical problems for the receiver real-time precision single point positioning technology. To find a rapid and accurate prediction method for small sample satellite clock error sequences, a optimized algorithm model PGM(1, 1) is presented based on the drawback analysis of the conventional GM(1, 1) predication model. The predication model using the latest measurement for initialization is established, followed by replacing the old information with the latest one to realize model predication. In addition, the attenuated memory recursive least squares method is adopted for weighted handling of both the old and new information. The normalized mean relative error is used as accuracy test standard for fitting coefficient optimization factors and particle swarm optimization adaptive optimization is adopted. The typical clock errors error of five GPS satellites are predicted among one day using the PGM(1, 1) model. The prediction accuracy is greatly improved with small training samples compared with the GM(1, 1) model and the second order polynomial model, which indicates that the prediction method can be applied to the accurate and rapid forecasting of satellite clock error.
Keywords:satellite clock error prediction  grey theory  forgetting factor  particle swarm optimization  adaptive
本文献已被 CNKI 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号